
Journal of Computing Research and Innovation (JCRINN) Vol. 6 No. 4 (2021)
https://jcrinn.com : eISSN: 2600-8793
https://doi.org/10.24191/jcrinn.v6i4.237

Copyright© 2021 UiTM Press. This is an open access article under the CC BY-NC-SA
(https://creativecommons.org/licenses/by-nc-sa/4.0//)

61

Network Automation using Ansible for EIGRP Network

Mohd Faris Mohd Fuzi1*, Khairunnisa Abdullah2, Iman Hazwam Abd Halim3, Rafiza Ruslan4
 1,2,3,4 Faculty of Computer and Mathematical Sciences,

Universiti Teknologi MARA Perlis Branch, Arau Campus, 02600 Arau, Perlis, Malaysia

Corresponding author: * farisfuzi@uitm.edu.my
Received Date: 15 August 2021

Accepted Date: 4 September 2021
Revised date: 28 September 2021
Published Date: 1 October 2021

HIGHLIGHTS

• All the scripts are configured on the Network Automation using Ansible Playbook.
• YAML file has some rules that need to be followed to make the script run.
• Develop scripting to push the EIGRP routing protocol and EIGRP advanced configuration from the

Network Automation Docker to the three routers in the GNS3 environment.
• The scripting has successfully automated the configuration and verified it in the testing phase.

ABSTRACT
Network automation has evolved into a solution that emphasizes efficiency in all areas. Furthermore,
communication and computer networks rely on a platform that provides the necessary technological
infrastructure for packet transfer through the Internet using routing protocols. The Enhanced Interior
Gateway Routing Protocol (EIGRP) is a hybrid routing protocol that combines the properties of both
distance-vector and link-state routing methods. The traditional technique to configure EIGRP is
inefficient and requires repeated processes compared to the network automation concept. Network
automation helps to assist network administrators in automating and verifying the EIGRP configuration
using scripting. This paper implemented network automation using Ansible to configure EIGRP routing
and advanced configuration in the GNS3 environment. This study is focused on automated scripting to
configure IP Addresses to the interfaces, EIGRP routing protocol, a default static route and advanced
EIGRP configurations. Ansible ran the scripting on Network Automation Docker and pushed the
configurations to the routers. The network automation docker communicated with other routers via SSH.
In the testing phase, the running configuration between the traditional approach and automation
scripting in the Ansible playbook was compared to verify EIGRP configurations' accuracy. The findings
show that Ansible has successfully deployed the configuration to the routers with no errors. Ansible can
help network administrators minimized human mistakes, reduce time-consuming and enable device
visibility across the network environment. Implementing EIGRP authentication and hardening process
can enhance the network security level for future study.

Keywords: Network Automation, Ansible, GNS3, EIGRP

https://jcrinn.com/
https://creativecommons.org/licenses/by-nc/4.0/

Journal of Computing Research and Innovation (JCRINN) Vol. 6 No. 4 (2021)
https://jcrinn.com : eISSN: 2600-8793
https://doi.org/10.24191/jcrinn.v6i4.237

Copyright© 2021 UiTM Press. This is an open access article under the CC BY-NC-SA
(https://creativecommons.org/licenses/by-nc-sa/4.0//)

62

INTRODUCTION

Network automation has become a solution provided today that prioritizes effectiveness in every area.
The concept of network automation focuses on automating the management, deployment, testing, and
activity of physical devices or virtual networks in a control node with a running program. It assists in
performing several tasks, reducing time consumption, and eliminating potential mistakes since all
configurations are written and served in a script (Islami, Musa & Lamsani, 2020). Besides that, network
automation is faster and efficient than traditional operations (Mazin, Rahman, Kassim & Mahmud, 2020).
All the tasks and processes can be scripted automatically. Network configurations have been simplified
into a file. The file used executes repetitive tasks and arranges the operation sequentially (Islami et al.,
2020). The network automation is implemented using a tool called Ansible. Ansible is agent-less which
does not require additional software installed and communication via SSH (Shah, Dubaria, & Widhalm,
2018). The Internet has revolutionized the way in communication networks. Communication and
computer networks rely on a platform that enables the technological infrastructure to transmit packets
over the Internet using routing protocols. Enhanced Interior Gateway Routing Protocol (EIGRP) is based
on an advanced distance vector (Biradar, 2020). EIGRP disseminates network topology to the adjacent
routers and determines the best path using the distance vector and link-state algorithm. The metrics used
in the EIGRP routing protocol are delay and bandwidth (Masruroh, Robby, & Hakiem, 2016). EIGRP has
to establish a neighbor relationship before the routing updates are sent and support Variable-Length
Subnet Masking (VLSM) (Goyal, 2018).

RELATED WORKS

Network Automation

Network Automation improves the efficiency of configuration network devices using automated scripting
rather than the traditional method. Mazin et al. (2020) studied the performance differences in time
between manual configuration and automation using scripting. There were 36 Cisco network devices used
in the research with various types of IOS image versions. The study found that implementing automation
to configure the devices improved efficiency and reduced the time needed. The results show that the time
required is faster and efficient when using automation (120 seconds) than the manual configuration (5797
seconds).

Islami et al. (2020) studied the implementation using network automation in Raspberry Pi to configure
network devices. The study used the Ansible tool to complete the tasks. The result concluded that network
automation could reduce equipment configuration and maintenance time and reduce human error in
configuration syntaxes. Their study indicated that Raspberry Pi has a restriction with the use of Ansible
version.

Based on the research conducted by Wijaya, J. (2018), the study showed scripting effectiveness in
implementing network devices. The method used in this study is by using Ansible as an automation tool
to configure the network device, the Ubuntu environment and the CISCO IOS image. However, Ansible
supports only Linux and not Windows environments. The study concluded that the network administrator
must create a proper infrastructure and implement automation scripting using Ansible without configuring
each device.

Ortiz-Garces, Echeverria, and Andrade (2021) proposed a network automation model to harden the
campus network. The model consists of three phases focused on the communication protocols, hardening

https://jcrinn.com/
https://creativecommons.org/licenses/by-nc/4.0/

Journal of Computing Research and Innovation (JCRINN) Vol. 6 No. 4 (2021)
https://jcrinn.com : eISSN: 2600-8793
https://doi.org/10.24191/jcrinn.v6i4.237

Copyright© 2021 UiTM Press. This is an open access article under the CC BY-NC-SA
(https://creativecommons.org/licenses/by-nc-sa/4.0//)

63

configurations and playbook deployment. The researchers implemented a network automation model
using Ansible and Open Shortest Path First (OPSF) for the routing protocol. The hardening process has
two levels covered on the rules: network AAA rules, access rules, routing rules and OSPF authentication.
Their study found an increment in the percentage of hardening of the campus network.
Routing Protocol

Okonkwo and Emmanuel (2020) determined a comparative study of RIP, OSPF, and EIGRP using ring
topologies on the GNS3 network emulator. Their study involved designing four, six, eight, and twenty
routers connected using star and mesh topologies. The researchers configured EIGRP and OSPF routing
protocol using a network simulator and Cisco hardware equipment. The limitation found was that it had
been restricted to several network routers. Then, in convergence length, EIGRP had higher efficiency, the
period when a connection fails and added new links to the network rather than the OSPF protocol for
routing.

Manzoor, Hussain, and Mehrban (2020) studied the best path to each network connection. The analysis
made with routing protocols EIGRP, OSPF, and BGP are used in this topology and configured route
distribution on these routers. Different types of data traffic are generated for network convergence,
throughput, and packet delay. However, the limitation is that EIGRP has been used in a small
environment. From the study, EIGRP is better in convergence while OSPF is better in packet delay. There
are some similarities between their project and this project. This project focuses on the configuration of
EIGRP using Network Automation.

Graphical Network Simulator-3 (GNS3)

Mihaila, Balan, Curpen, and Sandu (2017) discussed how to show scripting effectiveness in implementing
network devices. It emulated the network topology using GNS3, Ubuntu Docker Container as a central
feature and controlled the network devices using Paramiko and Netmiko. This study stated that the new
programmatic method is supported only by more recent devices. The finding from this study shows that
the controllability of the network is extremely easy, and modification could be implemented faster. The
project is quite similar, which uses the GNS3 emulator platform but different network automation tools.

METHODOLOGY

Design and Development

The design and development phase begins with all the required software installed to build the network
topology in the GNS3 interface. The implementation starts with an IOS image loaded into the GNS3.
Then, the topology is created and evaluated. If the topology is appropriate, the automation script is
configured in Ansible. If not, the topology has to be modified. Next, the scripting was loaded into the
devices and tested to check if the configurations were functioning. It also has to be changed if the network
is not successfully operating. Figure 1 illustrates the network topology of this project.

https://jcrinn.com/
https://creativecommons.org/licenses/by-nc/4.0/

Journal of Computing Research and Innovation (JCRINN) Vol. 6 No. 4 (2021)
https://jcrinn.com : eISSN: 2600-8793
https://doi.org/10.24191/jcrinn.v6i4.237

Copyright© 2021 UiTM Press. This is an open access article under the CC BY-NC-SA
(https://creativecommons.org/licenses/by-nc-sa/4.0//)

64

Figure 1: Network Topology

Preparing YAML Files

Some YAML files must be created before pushing the scripting on the devices: network interface
configuration, ansible host and ansible configurations. The static IP address was configured inside
nano/etc/network/interfaces files. Figure 2 shows the network interfaces configuration.

Figure 2: Network Interfaces Configuration

Ansible Host file configuration contains an inventory list that Ansible used to determine where the task
should be performed and communicated through host name by adding the IP address belonging to the
routers' interface. Figure 3 and Figure 4 show the inventory list and host file.

Figure 3: Inventory List

https://jcrinn.com/
https://creativecommons.org/licenses/by-nc/4.0/

Journal of Computing Research and Innovation (JCRINN) Vol. 6 No. 4 (2021)
https://jcrinn.com : eISSN: 2600-8793
https://doi.org/10.24191/jcrinn.v6i4.237

Copyright© 2021 UiTM Press. This is an open access article under the CC BY-NC-SA
(https://creativecommons.org/licenses/by-nc-sa/4.0//)

65

Figure 4: Host File

Lastly, Ansible.cfg file configuration was configured. A few lines in the Ansible configuration file
specified which inventory to utilize. Figure 5 shows the Ansible.cfg.

Figure 5: Ansible.cfg

Ansible Playbook Scripting

The Ansible playbook is written in YAML format. The playbook is a YAML file that contains the
command order. Tasks, modules, and files are all part of a role's structure. The role comprises a directory
with subdirectories, each having a main.yml file that describes the order in which operations should be
done. And the modules are short programs that perform specific activities on the system. They can be
used alone or as part of larger scripts known as playbooks. Figure 6 shows the structure of Ansible
Scripts.

Figure 6: Structure of Ansible Scripts

MODULE TASK

PROJECT

PLAYBOOK

ROLE

https://jcrinn.com/
https://creativecommons.org/licenses/by-nc/4.0/

Journal of Computing Research and Innovation (JCRINN) Vol. 6 No. 4 (2021)
https://jcrinn.com : eISSN: 2600-8793
https://doi.org/10.24191/jcrinn.v6i4.237

Copyright© 2021 UiTM Press. This is an open access article under the CC BY-NC-SA
(https://creativecommons.org/licenses/by-nc-sa/4.0//)

66

Ansible scripting starts with configuration of the EIGRP routing protocol. The topology has three routers
and is configured with routing to enable EIGRP. The Autonomous System (AS) ID 10 is configured on
all directly connected interfaces. The next scripting is the configuration and propagated a default static
route. Using the redistribute static command, a default static route is configured in R2 and propagated to
all other routers. The last scripting is EIGRP fine-tune. The bandwidth, EIGRP interface percentage, hello
interval, and hold timer are configured on all routers. The IP bandwidth-percent command is used to
change the amount of bandwidth percentage available to EIGRP.

TESTING AND ANALYSIS

There are four tests involved in this project. For the first test, the Ansible playbook scripting was ran in
network automation docker to check that all tasks such as IP address, loopback address, and basic EIGRP
are working efficiently. For the second test, the EIGRP operation was conducted to verify the EIGRP
configuration that consists of EIGRP neighbors, routing protocol information and routing table. The ping
command and show run command were applied. The third test is the default static route test, which used
show commands to view the task of propagating a default static route script on the router. The last test is
Fine-Tune EIGRP test. This test was conducted to check the bandwidth utilization, hello interval and hold
timer. Figure 7 shows the test framework used in this project.

Figure 7: Test Framework

Network Automation using Ansible for EIGRP Network

Test 1
Ansible Playbook

testing

Test 2
EIGRP operation

testing

Test 3
Default static
route testing

Test 4
Fine-Tune of

EIGRP testing

Result and Analysis

Objective

To ensure that the
advanced EIGRP
configuration is
successfully setup

Method

Check of IP
EIGRP interfaces
detail

Objective

View the task of
propagating a
default static
route that can be
configured with
Ansible script

Method

Test with Ansible
command

Objective

To check whether
the EIGRP has
been configured
on all routers

Method

Ping routers for
connectivity, and
using show run
command

Objective

To see the
functionality of
Ansible playbook
scripting

Method

Run Ansible
playbook

https://jcrinn.com/
https://creativecommons.org/licenses/by-nc/4.0/

Journal of Computing Research and Innovation (JCRINN) Vol. 6 No. 4 (2021)
https://jcrinn.com : eISSN: 2600-8793
https://doi.org/10.24191/jcrinn.v6i4.237

Copyright© 2021 UiTM Press. This is an open access article under the CC BY-NC-SA
(https://creativecommons.org/licenses/by-nc-sa/4.0//)

67

Ansible Playbook Results

The playbook contains one play with five tasks, and the output is shown in Figure 8. The result shows the
four configurations in the target routers were successfully changed. The configurations included an
interface IP address, a loopback IP address and an EIGRP configuration.

Figure 8: Result of Ansible Playbook

EIGRP Operation Results

Based on Table 1 below, the routers could ping one another after EIGRP routing was configured. R1
could ping the R2 (192.168.0.62) and R3 (192.168.0.63). The ping results verified the successful
connection.

Table 1: Ping Test Results
Router Item Description

R2 192.168.0.62 Success
R3 192.168.0.63 Success

Verification of EIGRP Neighbors

The result of each adjacent router's IP address and the interface used to reach the EIGRP neighbor can be
verified with show ip eigrp neighbors command on R1. This command examines the neighbor table,
confirms EIGRP is formed adjacent with R2 and R3 routers, and determines when neighbors become
active and inactive. The result of the ansible-playbook getEigrp.yml -u cisco -k command also shows that
the task played smoothly. Figure 9 shows the output of EIGRP neighbor scripting.

https://jcrinn.com/
https://creativecommons.org/licenses/by-nc/4.0/

Journal of Computing Research and Innovation (JCRINN) Vol. 6 No. 4 (2021)
https://jcrinn.com : eISSN: 2600-8793
https://doi.org/10.24191/jcrinn.v6i4.237

Copyright© 2021 UiTM Press. This is an open access article under the CC BY-NC-SA
(https://creativecommons.org/licenses/by-nc-sa/4.0//)

68

Figure 9: EIGRP Neighbor Scripting

The comparison of both commands is shown in Table 2. It showed that all the configurations could be
verified using show ip eigrp neighbors either by traditional technique or Ansible scripting.

Table 2: Testing Comparison
Type Command Task

Show run in router show ip eigrp neighbors Success

Ansible script ansible-playbook getEigrp.yml -u cisco -k Success

Routing Protocol Information

Show ip protocols command is used to display information about the routing protocol operation in R1.
The output displayed the configuration, including the protocol, process ID and network. Figure 10 shows
the IP address of the adjacent neighbors.

https://jcrinn.com/
https://creativecommons.org/licenses/by-nc/4.0/

Journal of Computing Research and Innovation (JCRINN) Vol. 6 No. 4 (2021)
https://jcrinn.com : eISSN: 2600-8793
https://doi.org/10.24191/jcrinn.v6i4.237

Copyright© 2021 UiTM Press. This is an open access article under the CC BY-NC-SA
(https://creativecommons.org/licenses/by-nc-sa/4.0//)

69

Figure 10: EIGRP Protocols

Verification of EIGRP Routing Table

Verification of EIGRP routing table used show ip route and ansible-playbook iproute.yml -u cisco -k
command. Table 3 shows the testing comparison result of both tests. It is proven that the configuration
was successfully configured using Ansible playbook scripting.

Table 3: Testing Comparison
Type Command Task

Show run in router show ip route Success

Ansible script ansible-playbook iproute.yml -u cisco -k Success

Verification of Default Static Route

Default static route configuration was verified by using show ip protocols command on R2 and ansible-
playbook playbookR2.yml -u cisco -k command in Ansible playbook. Table 4 shows the result for all
routers using the show ip route eigrp | include 0.0.0.0 command to view the default route's statement. The
result represented the static default route. For R1 and R3, the D*EX indicated that they were external AS
routes. The gateway of 0.0.0.0 means that there is no gateway for reaching the corresponding destination
subnet. However, the administrative distance (AD) for all routers was 170.

https://jcrinn.com/
https://creativecommons.org/licenses/by-nc/4.0/

Journal of Computing Research and Innovation (JCRINN) Vol. 6 No. 4 (2021)
https://jcrinn.com : eISSN: 2600-8793
https://doi.org/10.24191/jcrinn.v6i4.237

Copyright© 2021 UiTM Press. This is an open access article under the CC BY-NC-SA
(https://creativecommons.org/licenses/by-nc-sa/4.0//)

70

Table 4: Default Route Statement

Type Command Administrative
Distance

R1 Gateway of last resort is 192.168.1.2 to network 0.0.0.0
D*EX 0.0.0.0/0 [170/156160] via 192.168.1.2, 01:29:36,
FastEthernet1/0

170

R2 Gateway of last resort is 0.0.0.0 to network 0.0.0.0 170

R3 Gateway of last resort is 192.168.2.1 to network 0.0.0.0
D*EX 0.0.0.0/0 [170/156160] via 192.168.2.1, 01:30:42,
FastEthernet1/0

170

Verification of EIGRP Fine Tune

Table 5 shows the results obtained during the Fine Tune EIGRP testing. The advanced EIGRP testing for
bandwidth utilization, hello interval, and hold time on R1 was tested with the ansible-playbook
FineTune.yml -u cisco -k command. The show ip eigrp interfaces detail command was used to verify the
configuration of FineTune.yml on all routers. The results show that the new bandwidth percentage
changed to 75 percent and the hello-interval was 60 seconds, and the hold time was 180 seconds for the
interfaces Fa1/0 and Fa2/0. EIGRP used no more than 75% of a link's available capacity. For every 60
seconds, the routers send out a hello packet to confirm its neighbor relationship, and if it does not receive
a response, it will wait 180 seconds before announcing that neighbor drop.

Table 5: Parameters Details on R1
Interfaces Hello-interval / seconds Hold-timer / seconds Bandwidth / percent
Fa0/0 5 15 -

Fa1/0 60 180 75

Fa2/0 60 180 -

Lo1 5 15 -

CONCLUSION AND RECOMMENDATIONS

The implementation of network automation using Ansible is simple and it is designed to assist network
administrators in configuring the network devices. It helps the network administrator to manage devices
efficiently and reduce the configuration time. The network administrator automated the scripts in the
Ansible playbook and pushed to deploy the configurations or retrieve information from the managed
devices. All the tasks that have been automated on the Ansible playbook are human-readable data format
and agentless. The purpose of this project was to implement network automation using Ansible to
configure EIGRP. Ansible was found to successfully automated the script and deployed the
configurations. The results and analysis showed that the EIGRP configuration using automated scripts
was verified and accurate. There are some recommendations for future research: implementing hardening
and EIGRP authentication to improve security.

https://jcrinn.com/
https://creativecommons.org/licenses/by-nc/4.0/

Journal of Computing Research and Innovation (JCRINN) Vol. 6 No. 4 (2021)
https://jcrinn.com : eISSN: 2600-8793
https://doi.org/10.24191/jcrinn.v6i4.237

Copyright© 2021 UiTM Press. This is an open access article under the CC BY-NC-SA
(https://creativecommons.org/licenses/by-nc-sa/4.0//)

71

ACKNOWLEDGMENTS

The authors express sincere gratitude and thanks especially to the officers of IPD Kuala Muda for their
contributions and supports in giving us information during interviews to complete our study and people
who helps us direct and indirectly in this study.

CONFLICT OF INTERESTS DECLARATION

The authors declare no conflict of interests regarding the publication of this article.

REFERENCES

Biradar, A. G. (2020). A Comparative Study on Routing Protocols: RIP, OSPF and EIGRP and Their

Analysis Using GNS-3. Proceedings of the 5th IEEE International Conference on Recent Advances
and Innovations in Engineering (ICRAIE), 1-5.

Goyal, V. (2018). Review Paper on Comparison of RIP, OSPF, and EIGRP Protocols using Simulation.

International Journal on Future Revolution in Computer Science & Communication Engineering,
4(4), 135–140.

Islami, M. F., Musa, P.,& Lamsani, M. (2020). Implementation of Network Automation using Ansible to

Configure Routing Protocol in Cisco and Mikrotik Router with Raspberry PI. Journal Ilmiah
Komputer & Sistem Informasi (KOMPUTASI), 19(2), 127–134.

Manzoor, A., Hussain, M., &Mehrban, S. (2021). Performance Analysis and Route Optimization:

Redistribution between EIGRP, OSPF & BGP Routing Protocols. Journal of Computer Standards
and Interfaces, 68, 103391.

Masruroh, S. U., Robby, F., & Hakiem, N.(2016). Performance Evaluation of Routing Protocols RIPng,

OSPFv3, and EIGRP in an IPv6 Network. Proceedings of the International Conference on
Informatics and Computing (ICIC), 111-116.

Mazin, A. M., Rahman, R. A., Kassim, M. & Mahmud, A. R. (2020). Performance Analysis on Network

Automation Interaction with Network Devices using Python. Proceedings of the 11th IEEE
Symposium on Computer Application & Industrial Electronics (ISCAIE), 360-366.

Mihaila, P., Balan, T. C., Curpen, R., & Sandu, F. (2017). Network Automation and Abstraction using

Python Programming Methods. Proceedings of the 6th International Conference on Recent
Achievements in Mechatronics, Automation, Computer Science and Robotics (MACRo), 95–103.

Okonkwo, I. J., & Emmanuel, I. D. (2020). Comparative Study of EIGRP and OSPF Protocols based on

Network Convergence. International Journal of Advanced Computer Science and Applications
(IJACSA), 11(6), 39–45.

Ortiz-Garces, I., Echeverria, A. & Andrade, R. O. (2021). Automation Tasks Model for Improving

Hardening Levels on Campus Networks. Proceedings of the Fifth World Conference on Smart Trends
in Systems Security and Sustainability (WorldS4), 30–35.

https://jcrinn.com/
https://creativecommons.org/licenses/by-nc/4.0/

Journal of Computing Research and Innovation (JCRINN) Vol. 6 No. 4 (2021)
https://jcrinn.com : eISSN: 2600-8793
https://doi.org/10.24191/jcrinn.v6i4.237

Copyright© 2021 UiTM Press. This is an open access article under the CC BY-NC-SA
(https://creativecommons.org/licenses/by-nc-sa/4.0//)

72

Shah, J., Dubaria, D., & Widhalm, J. (2018). A Survey of DevOps Tools for Networking. Proceedings of
the 9th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference
(UEMCON), 185–188.

Wijaya, J. (2018). Network Automation using Ansible for Cisco Routers Basic Configuration. Retrieved

from osf.io/u8cdm.

https://jcrinn.com/
https://creativecommons.org/licenses/by-nc/4.0/

	ABSTRACT
	INTRODUCTION
	RELATED WORKS
	METHODOLOGY

