
Journal of Computing Research and Innovation (JCRINN) Vol 2, No 1 (2017) 
https://crinn.conferencehunter.com 

10 
 

Article 2 
 
Integration of Ontology and UML Class-Based Modelling for Knowledge 
Representation  
 
Rozita Kadar 
School of Computer Sciences,  
Universiti Sains Malaysia, Pulau Pinang, Malaysia 
Faculty of Computer and Mathematical Sciences,  
Universiti Teknologi MARA Pulau Pinang Branch, Malaysia 
 
Sharifah Mashita Syed-Mohamad, Putra Sumari 
School of Computer Sciences,  
UniversitiSains Malaysia, Pulau Pinang Branch, Malaysia 
 
Nur 'Aini Abdul Rashid 
Department of Computer Sciences, 
College of Computer & Information Sciences, 
Princess Nourahbint Abdulrahman University, KSA. 

 
Abstract  
Program comprehension is an important process carried out involving much effort in software 
maintenance process. A key challenge to developers in program comprehension process is to 
comprehend a source code. Nowadays, software systems have grown in size causing increase 
in developers' tasks to explore and understand millions of lines of source code. Meanwhile, 
source code is a crucial resource for developers to become familiar with a software system 
since some system documentations are often unavailable or outdated. However, there are 
problems exist in understanding source codes, which are tricky with different programming 
styles, and insufficient comments. Although many researchers have discussed different 
strategies and techniques to overcome program comprehension problem, only a shallow 
knowledge is obtained about the challenges in trying to understand a software system through 
reading source code. Therefore, this study attempts to overcome the problems in source code 
comprehension by suggesting a suitable comprehension technique. The proposed technique is 
based on using ontology approach for knowledge representation. This approach is able to 
easily explain the concept and relationship of program domain. Thus, the proposed work will 
create a better way for improving program comprehension.  

 
Keywords: Program Comprehension, Knowledge Based, Information Extraction, 
Visualization, Ontology. 

 
 

Introduction  
Nowadays, software is developed iteratively and incrementally, which results in rapid 
evolution of software system. Besides, with today’s rapid growth in system size and 
complexity, software maintainers are facing tremendous comprehension challenges driven by 
the need to maintain software system (Tiarks&Röhm, 2013; Carvalho, 2013; Yazdanshenas 
and Moonen, 2012). One of the key challenges faced by novice software maintainer is to 
comprehend the software system being maintained. Program comprehension is one of the major 
activities in software maintenance that mainly takes place prior maintaining process (Rajlich 
and Gosavi, 2004). Furthermore, software maintainers assigned with changing a large software 
system spend much effort on program comprehension to gain the knowledge on the system that 
needs to employ the changes (Corley et al., 2012).  



Journal of Computing Research and Innovation (JCRINN) Vol 2, No 1 (2017) 
https://crinn.conferencehunter.com 

11 
 

 
Program comprehension can be very time-consuming due to the lack of proper documentation 
where some estimate that up to 50% of software maintenance effort is spent on understanding 
the software system maintained (Roongruangsuwan and Daengdej, 2010; SWEBOK, 2004; 
Guzzi et al., 2011; Xu, 2005), whereas 41.8% of the total effort is in reading and understanding 
program (Normantas and Vasilecas, 2013). 
 
Hence, this work proposed the source code metadata extraction process and represented it in a 
form of ontology. The findings of this work are demonstrated as part of knowledge 
representation. This work focuses on Object-Oriented Programming. Meanwhile, the research 
questions are on how to design rules used to extract metadata from source code. The goal of 
this study is to facilitate novice developers to comprehend a program while performing 
maintenance tasks. This goal can be specifically achieved through the following objectives: to 
propose an extraction rules used to extract source code metadata. The expected contributions 
of this work are: the rules to extract source code metadata as the knowledge representation. 
 
The paper is organised as follows. The next section reviews the previous studies by comparing 
the techniques in this area. The following section discusses the propose work. The conclusion 
of this study is presented in the final section. 
 
Related Work 
Ontology fragment is an approach used to improve program comprehension (Wilson, 2010). In 
populating ontology, the source code should be analysed through a process of information 
extraction, which is a process to obtain the information in a source code and display it in a 
different view. The retrieved information from the source code should be stored in a standard 
form of information. It will go through a process using an ontological approach. At present, the 
ontology is used in many fields to represent knowledge and to provide a formal way to define 
a concept. Use of ontology includes to support program understanding (Wilson, 2010). Bohnet 
et al. (2008) proposed a technique of retrieving source code information and then visualising 
various characteristics of the execution information to gain insight on how features are built on 
the code. Developers provide a scenario as an input that triggers a feature of interest in the 
system, whereas the output is presented to the developers using advanced visualisation views. 
This approach has been compared to a tool called grep with the result showing that developers 
are able to locate the concept of interest in less than half an hour without having prior 
knowledge about the system.  
 
Similarly, Abebe & Tonella (2010) introduced an approach that extracts concepts from source 
codes by applying Natural Language Process (NLP) techniques where the identifiers of 
program elements are extracted and candidate sentences that use those identifiers are formed. 
Some of the sentences that do not follow certain rules were eliminated, while the remaining 
sentences were used as an input for creating ontology that captures the concepts and relations 
of the source code. A preliminary evaluation revealed that using information from ontology 
concept can improve the accuracy of query, allow developers to formulate queries that are more 
precise and can reduce the search space.  
 
Petrenko et al. (2008) developed a feature location technique based on grep and ontology 
fragments. The ontology fragments stored partial domain knowledge about a feature. The 
hypothesis of this approach is that ontology fragments help developers to formulate queries 
and guide the investigation of their results, which would increase the effectiveness of the 
feature location.  



Journal of Computing Research and Innovation (JCRINN) Vol 2, No 1 (2017) 
https://crinn.conferencehunter.com 

12 
 

 
The tool used to support the management of the ontology fragment is called Protégé. Wilson 
(2010) extended Petrenko et al. (2008) approach by introducing a systematic approach for 
formulating queries based on ontology fragments, which represents partial knowledge about 
the system. This approach has allowed the developers to formulate a query based on terms 
presented in the ontology fragment. A preliminary evaluation involving four developers to 
perform concept location on the Mozilla and Eclipse systems revealed that a small and partial 
knowledge about the system is sufficient for successfully locating a concept in the code. This 
approach is relevant to Petrenko et al. (2008) approach, but the main difference is that the 
former approach automatically generates the ontology, whereas the latter approach is manually 
generated by developers.  
 
Meng et al. (2006) proposed a technique to program comprehension using ontology and 
description logic. As a part of the technique, they adopted a new interactive story metaphor to 
represent the interactions between users and comprehension process. The comprehension 
process can be viewed as authoring an interactive narrative between users and systems towards 
completing a specific goal. Developers have mapped between program comprehension process 
model and story model. The advantage of using story metaphor is that it provides an interactive 
context to guide comprehension process.  
 
 
The Integration Rules of Ontology and UML Class-based Modelling  
 
In general, ontology development is divided into two main phases: specification and 
conceptualisation. The goal of specification phase is to acquire informal knowledge on the 
domain while the goal of conceptualisation phase is to organise and structure the obtained 
knowledge. The processes taken in developing the proposed program ontology that consists of 
three phases are illustrated in Fig. 1. Nonetheless, this article only discusses the first phase, 
which is the integration process of ontology and UML class-based modelling. 
 
Ontology is used to define sets of concept describing the domain knowledge and allow for 
specifying classes by rich and precise logical definitions. The basic idea of developing ontology 
for software system is to provide an artefact consisting both code knowledge and domain 
knowledge, with which software maintainers can understand the features of source code. 
Ontology includes the concepts, relationships and instances to describe the specific domain of 
concern.  
 
Concepts are referred to a category that is also known as a class. A series of concepts represents 
the topics or characters in the domain ontology; relations show the connection between 
concepts and used to describe the association between concepts when considering a specific 
concept, which is also called an attribute; while instances describe a series of concepts and 
relationships with specific knowledge. Instances in ontology are the values of attribute of the 
class that describe necessary properties. Instances will also inherit all attributes or relationships 
of their class.  
 
 
 
 
 
 



Journal of Computing Research and Innovation (JCRINN) Vol 2, No 1 (2017) 
https://crinn.conferencehunter.com 

13 
 

 

Figure 1: A Framework of Ontology Development 

The proposed approach was used to extract an ontological point of view for software system 
by integration utilising the ontology and UML class-based modelling. Due to the similar 
features shared by both UML class diagram and ontology, class diagram was used to aid in 
populating code ontology (Table 1).  
 
UML class has the following features that make it possible to be transformed in the form of 
ontology.  
 

Definition 1  A UML class diagram is a tuple, C = {C| C = (CN, CA, CM, CR)} where CN 
represents the name of class in UML class diagram, C,CA is the list of attributes associated with 
this particular class, C,CM is a set of methods for defined class, C, whereas CR describes the 
different types of relation that can exist between any pair of classes in the UML class diagram, 
C.  

Definition 2 An attributes in UML class diagram is a tuple CA = {A|A=( An, At, Av, Ad)} where 
An is an attribute name, At is an attribute type, Av is an attribute visibility (Public, Protect or 
Private) and Ad is an attribute default value if given. 

Definition 3 A set of methods in UML class diagram is a tuple CM = {M|M=(Mn, Mt, Mv)} 
where Mnis the name of the method, Mt is the method type and Mvis the visibility of the method. 

Definition 4 A relationship between classes in UML class diagram is a tuple, CR = {R|R=(Rt, 
Rc, Rr)} where Rt is the type of relationship (Association, Composition, Aggregation or 
Generalization),  Rc is the cardinality specified for the source class and Rr defines the target 
class with which the source class is connected. 

A set of class diagram ontology described above are the complete structure of class diagram, 
which contains 4-tuples where the first concept is the class name, CN. The other element is 
concept of attribute, CA, where attribute name ϶ An, attribute type ϶ At, attribute visibility ϶ 

 

 



Journal of Computing Research and Innovation (JCRINN) Vol 2, No 1 (2017) 
https://crinn.conferencehunter.com 

14 
 

Av and attribute default ϶ Ad. The concept method defines a set of methods in class diagram 
and describe as method name ϶ Mn, method type ϶ Mt and method visibility ϶ Mv.  
 
The concepts relations described in the ontology were defined as relation type ϶ Rt, relation 
cardinality ϶ Rc and relation between classes ϶ Rc. All elements can be described as attribute 
type or method type = {numeric, string, NULL}, visibility of attribute and method = {public, 
private, protected}. Meanwhile, the relationship type = {aggregation, composition, association, 
generalisation}. The relationship cardinality = {0..*, 1..*, 0..1, 1} was used to describe the 
quantitative relationship between classes given by specifying minimum and maximum 
cardinalities. 
Hence, a set of transformation rules was proposed to populate ontology from a UML class 
diagram. On the other hand, it is believed that class diagram also has semantics representation, 
which is somehow implicitly preserved. Thus, ontology could be used to recover the semantics 
for class diagram.  
 
Table 1: Concepts Similarity of UML Class and Ontology Model 

Concept 
Similarity 

Similarity Description 

CS1 UML class denotes a set of objects with common features, while concept 
in ontology also does the same thing. 

CS2 UML class has hierarchical structure, while hierarchical structure is basic 
structure for taxonomy, which is one of the features that ontology has. 

CS3 UML class has properties, while ontology has two types of properties: 
object property and data type property 

CS4 UML class has relations such as associations and dependencies, while 
these relations represented as roles or properties in ontology. 

CS5 Class diagram includes class name, attributes and operation, while in 
ontology includes concepts, relationships and instances 

CS6 Class itself will be transformed into concept in the ontology 

CS7 The attributes of the class will be transformed into properties of that 
concept in ontology 

CS8 For the generalization classes, the relationships SubClassOf will be 
preserved by the subclass concepts. 

CS9 For the inheritance classes, the relationships SuperClassOf will be 
preserved by the superclass concepts. 

CS10 Association transformed into ConnnectTo property, and it is a symmetric 
property. 

CS11 Dependency transformed into DependOn property and its inverse property 
Depend. 

CS12 Aggregation transformed into HasA property. 

CS13 Composition transformed into PartOf property. 

 
Conclusion 
Ontology has become popular in several fields of information technologies including software 
engineering. In software engineering, ontology is understood as a conceptual model 
representing a domain knowledge in a set of concepts within the domain, the properties of the 
concepts and interrelations of those concepts. It is acknowledged that ontologies are important 
sources of knowledge in the conceptualisation of certain domains as well as the background 
for software development. In future work, the proposed knowledge integration will be applied 



Journal of Computing Research and Innovation (JCRINN) Vol 2, No 1 (2017) 
https://crinn.conferencehunter.com 

15 
 

as data source for information retrieval technique in concept location to find the relevance 
location in source code to implement change request. The aim is to facilitate the developers to 
find the location of source code prior implementing change request. 
 
References 
Abebe, S. L., & Tonella, P. (2010). Natural language parsing of program element names for 

concept extraction. In Program Comprehension (ICPC), 2010 IEEE 18th International 
Conference on (pp. 156–159). IEEE. 

Bohnet, J., Voigt, S., & Dollner, J. (2008). Locating and Understanding Features of Complex 
Software Systems by Synchronizing Time-, Collaboration- and Code-Focused Views on 
Execution Traces. 2008 16th IEEE International Conference on Program 
Comprehension, 268–271. http://doi.org/10.1109/ICPC.2008.21 

Meng, W., Rilling, J., Zhang, Y., Witte, R., Mudur, S., & Charland, P. (2006). A Context-
Driven Software Comprehension Process Model. 2006 Second International IEEE 
Workshop on Software Evolvability (SE’06), 50–57. 
http://doi.org/10.1109/SOFTWARE-EVOLVABILITY.2006.1 

Petrenko, M., Rajlich, V., & Vanciu, R. (2008). Partial domain comprehension in software 
evolution and maintenance. IEEE International Conference on Program 
Comprehension, 13–22. http://doi.org/10.1109/ICPC.2008.14 

Wilson, L. A. (2010). Using ontology fragments in concept location. IEEE International 
Conference on Software Maintenance, ICSM. 
http://doi.org/10.1109/ICSM.2010.5609555 

 


