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HIGHLIGHTS 
 

● Fuzzy Laplace Transforms applied to analyze performance measures. 
● A non-markovian fuzzy queuing system FM/FG/1. 
● Queuing systems models play an important role in computers systems implementation 
● The performance measures of a non-markovian queue in a fuzzy environment. 
● How to apply fuzzy transforms in the evaluation of the measures. 

_____________________________________________________________________________________________ 

 

ABSTRACT 
Laplace transforms play an essential role in the analysis of classical non-Markovian queueing systems. The 
problem addressed here is whether the Laplace transform approach is still valid for determining the 
characteristics of such a system in a fuzzy environment. In this paper, fuzzy Laplace transforms are applied 
to analyze the performance measures of a non-Markovian fuzzy queueing system FM/ FG/1. Starting from 
the fuzzy Laplace transform of the service time distribution, we define the fuzzy Laplace transform of the 
distribution of the dwell time of a customer in the system. By applying the properties of the moments of this 
distribution, the derivative of this fuzzy transform makes it possible to obtain a fuzzy expression of the 
average duration of stay of a customer in the system. This expression is the fuzzy formula of the same 
performance measure that can be obtained from its classical formula by the Zadeh extension principle. The 
fuzzy queue FM/ FE_k /1 is particularly treated in this text as a concrete case through its service time 
distribution. In addition to the fuzzy arithmetic of L-R type fuzzy numbers, based on the secant 
approximation, the properties of the moments of a random variable and Little's formula are used to compute 
the different performance measures of the system. A numerical example was successfully processed to 
validate this approach. The results obtained show that the modal values of the performance measures of a 
non-Markovian fuzzy queueing system are equal to the performance measures of the corresponding 
classical model computable by the Pollaczeck-Khintchine method. The fuzzy Laplace transforms approach 
is therefore applicable in the analysis of a fuzzy FM/FG/1 queueing system in the same way as the classical 
M/G/1 model. 
 
Keywords: Fuzzy Laplace Transforms, Erlang-k Service, Fuzzy Arithmetic, Performance Measures, 
Defuzzification. 
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INTRODUCTION 

Today, no one is unaware of the crucial role played by the modelling of queueing systems in the 
implementation of computer systems, telecommunication systems, etc. 
A queuing system is often described as a circuit in which a client who, on arrival, finds the server(s) busy, 
decides: 

● Or wait for a random period until it is served to leave the circuit; 
● Or to go away and come back to request the service after a random time; 
● Or to leave once and for all. 

Several researches have already successfully analysed different types of classical queues and derived 
performance measures (Babu, P. S., Kumar, K. S., & Chandan, K. (2022).). 
 
When the descriptor parameters of the system are vague and imprecise, it is called a fuzzy queueing system, 
usually represented by the letter 𝐹𝐹This is usually represented by the letter "Fuzzy". 

Much work has already been done to analyse these types of queues based on fuzzy set theory. This is 
particularly the case for Markovian fuzzy queuing systems 𝐹𝐹 M/ 𝐹𝐹 M/c and the product-form fuzzy 
queueing network. The main results of this work can be found in (Fatoumata, Y., Adnane, A., & Ataoua, 
Z. (2021).). 
 As for non-Markovian fuzzy models such as 𝐹𝐹 M/ 𝐹𝐹 G/1, 𝐹𝐹 G/ 𝐹𝐹 M/1 ..., the literature is not yet sufficiently 
extensive to our humble knowledge. Among these rare works, we quote for example of which would be the 
most recent to our humble knowledge (Al-Kridi, K., Anan, M. T., & Zeina, M. B. (2018).). 
 
Most of these researchers have based their analyses on the method of mathematical optimization programs 
PNLP (Parametric Non-Linear Programming), combining both the Zadeh Extension Principle and the 
Arithmetic of 𝛼𝛼-and intervals (Patel, K. R., & Desai, N. B. (2017).). 
 
Others have applied and shown that the L-R method is the fastest and most flexible method to analyze the 
FM/FEk/1 model (Çitil, H. G. (2019).). 
In this article, we asked the question of how to calculate the performance measures of a fuzzy waiting 
system 𝐹𝐹 M/ 𝐹𝐹 G/1 using the fuzzy Laplace transform approach in steady state.  
 
Our hypothesis is that the Laplace transform method would remain valid for analyzing both classical and 
fuzzy non-Markovian queue performance measures. 
Like the classical model, our methodology consists in calculating these measures from the fuzzy Laplace 
transforms of the distribution of the residence (waiting) times of a customer in the system (the queue) (Gong, 
Z., & Hao, Y. (2019).). 
 
This text is organized as follows: Section 2 covers the preliminaries, Section 3 deals with fuzzy Laplace 
transforms starting with the notion of fuzzy functions. Section 4 is devoted to the fuzzy model 𝐹𝐹 M/ 𝐹𝐹 G/1. 
The concrete case where 𝐺𝐺 = 𝐸𝐸𝑘𝑘 is discussed with a numerical example to validate the method. Finally, 
section 5 is reserved for the conclusion that ends the text (Chen, G., Liu, Z., & Zhang, J. (2020).). 
 
PRELIMINARIES 
 
Basic concepts 
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Definition 1 (Fazlollahtabar, H., & Gholizadeh, H. (2019).): Let X be a classical set called universe. A 
fuzzy subset 𝐴̃𝐴 of X is defined by a membership function 𝜇𝜇𝐴𝐴� of X in [0, 1] such that: 
𝜇𝜇𝐴𝐴�(𝑥𝑥) = {0                       𝑖𝑖𝑖𝑖 𝑥𝑥 ∉ 𝐴𝐴  (𝑛𝑛𝑛𝑛𝑛𝑛 𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎) 𝑟𝑟 ∈]0, 1[          𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ 𝐴𝐴 (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) 1                      𝑖𝑖𝑖𝑖 𝑥𝑥 ∈

𝐴𝐴  (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)                             (1) 
The essential characteristics of a fuzzy subset 𝐴̃𝐴 are the 𝛼𝛼-cuts 𝐴̃𝐴𝛼𝛼the support 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐴̃𝐴)the height ℎ(𝐴̃𝐴) and 
the core 𝑛𝑛𝑛𝑛𝑛𝑛(𝐴̃𝐴) defined as follows: 

𝐴̃𝐴𝛼𝛼 = {𝑥𝑥 ∈ 𝑋𝑋, 𝜇𝜇𝐴𝐴�(𝑥𝑥) ≥ 𝛼𝛼 }                                             (2) 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝐴̃𝐴� = {𝑥𝑥 ∈ 𝑋𝑋, 𝜇𝜇𝐴𝐴�(𝑥𝑥) > 0}                                   (3) 

ℎ�𝐴̃𝐴� = {𝜇𝜇𝐴𝐴�(𝑥𝑥),𝑥𝑥 ∈ 𝑋𝑋}                                           (4) 
𝑛𝑛𝑛𝑛𝑛𝑛�𝐴̃𝐴� = {𝑥𝑥 ∈ 𝑋𝑋, 𝜇𝜇𝐴𝐴�(𝑥𝑥) = 1}                                     (5) 

 
The 𝐴̃𝐴𝛼𝛼 are also called parametric representations of 𝐴̃𝐴. 
 
Definition 2 (Fazlollahtabar, H., & Gholizadeh, H. (2019).). : A fuzzy subset 𝐴̃𝐴 is said to be normal if 
ℎ�𝐴̃𝐴� = 1 ; 
 𝐴̃𝐴 is convex if  ∀𝑥𝑥, 𝑦𝑦 ∈ 𝑋𝑋,∀𝜆𝜆 ∈ [0, 1], 

𝜇𝜇𝐴𝐴�(𝜆𝜆𝜆𝜆 + (1 − 𝜆𝜆𝜆𝜆)) ≥ {𝜇𝜇𝐴𝐴�(𝑥𝑥),𝜇𝜇𝐴𝐴�(𝑦𝑦)}  ; 
 𝐴̃𝐴 is a fuzzy number if 𝐴̃𝐴 is a fuzzy subset of 𝑅𝑅 such that 𝑛𝑛𝑛𝑛𝑛𝑛�𝐴̃𝐴� ≠ ∅, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝐴̃𝐴� is bounded and 𝐴̃𝐴𝛼𝛼 are 
bounded intervals of 𝑅𝑅. The set of all fuzzy numbers is denoted 𝐹𝐹(𝑅𝑅). 
 
Definition 3: Any real 𝑥𝑥 such that 𝜇𝜇𝐴𝐴�(𝑥𝑥) = 1 is said to be a modal value or mode or the average value of 
the fuzzy number 𝐴̃𝐴. 
 
A fuzzy number 𝐴̃𝐴 is said to be strictly positive if ∀𝑥𝑥 < 0, 𝜇𝜇𝐴𝐴�(𝑥𝑥) = 0. It is strictly negative if ∀𝑥𝑥 > 0, 
𝜇𝜇𝐴𝐴�(𝑥𝑥) = 0. 
 
Definition 4 (Gong, Z., & Hao, Y. (2019).). : A fuzzy number 𝐴̃𝐴 is said to be triangular if there are three 
real numbers 𝑎𝑎 < 𝑏𝑏 < 𝑐𝑐 such that : 

𝜇𝜇𝐴𝐴�(𝑥𝑥) = { 𝑥𝑥−𝑎𝑎
𝑏𝑏−𝑎𝑎

  ,   𝑖𝑖𝑖𝑖  𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏      𝑐𝑐−𝑥𝑥
𝑐𝑐−𝑏𝑏

  ,     𝑖𝑖𝑖𝑖     𝑏𝑏 < 𝑥𝑥 ≤ 𝑐𝑐 0  ,                    𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                                           
(6) 

 
Notation : 𝐴̃𝐴 = (𝑎𝑎, 𝑏𝑏, 𝑐𝑐)  or  𝐴̃𝐴 = (𝑎𝑎/𝑏𝑏/𝑐𝑐). 
 
Definition 5 (Gong, Z., & Hao, Y. (2019).). : A fuzzy number 𝐴̃𝐴 is said to be of type L-R if there are three 
real 𝑚𝑚, 𝑎𝑎 > 0, 𝑏𝑏 > 0 and two positive, continuous and decreasing functions L and R of 𝑅𝑅 in [0, 1] such 
that : 
 𝐿𝐿(0) = 𝑅𝑅(0) = 1 ; 𝐿𝐿(1) = 0 or  𝐿𝐿(𝑥𝑥) > 0 ∀𝑥𝑥 ∈ 𝑅𝑅 with 𝐿𝐿(𝑥𝑥) = 0  ; 
𝑅𝑅(1) = 0 or  𝑅𝑅(𝑥𝑥) > 0 ∀𝑥𝑥 ∈ 𝑅𝑅 with 𝑅𝑅(𝑥𝑥) = 0  ; 

𝜇𝜇𝐴𝐴�(𝑥𝑥) = { 𝐿𝐿 �𝑚𝑚−𝑥𝑥
𝑎𝑎
� ,      𝑖𝑖𝑖𝑖  𝑥𝑥 ∈ [𝑚𝑚 − 𝑎𝑎,𝑚𝑚]      𝑅𝑅 �𝑥𝑥−𝑚𝑚

𝑏𝑏
� ,       𝑖𝑖𝑖𝑖     𝑥𝑥 ∈ [𝑚𝑚,𝑚𝑚 +

𝑏𝑏] 0   ,                              𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                                           (7) 
 
Notation : 𝐴̃𝐴 = 〈𝑚𝑚,𝑎𝑎, 𝑏𝑏〉𝐿𝐿𝐿𝐿 or simply 𝐴̃𝐴 = (𝑚𝑚,𝑎𝑎, 𝑏𝑏)𝐿𝐿𝐿𝐿 
Moreover, any triangular fuzzy number 𝐴̃𝐴 = (𝑎𝑎, 𝑏𝑏, 𝑐𝑐) is a fuzzy number of type L-R.  Its L-R writing is : 
𝐴̃𝐴 = (𝑎𝑎, 𝑏𝑏, 𝑐𝑐)  = 〈𝑏𝑏, 𝑏𝑏 − 𝑎𝑎, 𝑐𝑐 − 𝑏𝑏〉𝐿𝐿𝐿𝐿. 
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The family of all fuzzy numbers of type L-R is denoted 𝐹𝐹𝐿𝐿𝐿𝐿(𝑅𝑅) and any real 𝑟𝑟 also called fuzzy singleton 
has the form L-R  𝑟𝑟 = (𝑟𝑟, 0, 0)𝐿𝐿𝐿𝐿 (by convention). 
 
Fuzzy arithmetic 
 
The algebraic operations on fuzzy numbers, used in this text, are based on three main arithmetics: the Zadeh 
extension principle, the arithmetic of 𝛼𝛼-cuts and intervals and the arithmetic of fuzzy numbers of the same 
type L-R (Gong, Z., & Hao, Y. (2019).). 
 
The Zadeh extension principle 
 
The arithmetic of the extension principle allows any classical binary operation to be extended ∗ in 𝑅𝑅 to a 
fuzzy binary operation ⊛ in 𝐹𝐹(𝑅𝑅) defined ∀𝐴̃𝐴,𝐵𝐵� ∈ 𝐹𝐹(𝑅𝑅), ∀𝑧𝑧 ∈ 𝑅𝑅   by (Chen, G., Liu, Z., & Zhang, J. 
(2020).). : 

𝜇𝜇𝐴𝐴� ⊛𝐵𝐵�(𝑧𝑧) =𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠 �{𝜇𝜇𝐴𝐴�(𝑥𝑥),𝜇𝜇𝐵𝐵�(𝑦𝑦)}  ∕ 𝑥𝑥,𝑦𝑦 ∈ 𝑅𝑅, 𝑥𝑥 ∗ 𝑦𝑦 = 𝑧𝑧�                   (8) 
It is defined as follows: 
 
Definition 6 (Fazlollahtabar, H., & Gholizadeh, H. (2019).). : Let 𝐸𝐸 = 𝐸𝐸1 × … × 𝐸𝐸𝑛𝑛 and 𝐹𝐹 be two classical 
sets. Let f also be an application from E into F. The extension principle is another application 𝑓𝑓 of 𝑃𝑃�(𝐸𝐸) in 
𝑃𝑃�(𝐹𝐹) such that   ∀𝐴̃𝐴 ∈ 𝑃𝑃�(𝐸𝐸), ∃𝐵𝐵� ∈ 𝑃𝑃�(𝐹𝐹) : 𝑓𝑓�𝐴̃𝐴� = 𝐵𝐵�  and ∀𝑦𝑦 ∈ 𝐹𝐹we have 
 

{𝜇𝜇𝐵𝐵�(𝑦𝑦) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥∈ 𝐸𝐸
𝑓𝑓(𝑥𝑥)=𝑦𝑦

��𝜇𝜇𝐴𝐴�1(𝑥𝑥1), … , 𝜇𝜇𝐴𝐴�𝑛𝑛(𝑥𝑥𝑛𝑛)� �  𝑖𝑖𝑖𝑖 𝑓𝑓−1(𝑦𝑦) ≠ ∅  𝜇𝜇𝐵𝐵�(𝑦𝑦) =

0 ,                                                                                           𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒       (9) 
where 𝑓𝑓−1 is the reciprocal of 𝑓𝑓 and 𝑃𝑃�(𝐸𝐸), 𝑃𝑃�(𝐹𝐹) are respectively the sets of all fuzzy subsets of 𝐸𝐸 and 𝐹𝐹. 
 
Arithmetic of 𝛼𝛼-cuts and intervals 
 
The arithmetic of 𝛼𝛼-The arithmetic of the cuts is based on the interval arithmetic as defined below: 
Definition 7: Let [𝑎𝑎, 𝑏𝑏], [𝑐𝑐,𝑑𝑑] two bounded real intervals and ∗ the classical operation of addition, 
subtraction, multiplication or division. We have : 

[𝑎𝑎, 𝑏𝑏] ∗ [𝑐𝑐,𝑑𝑑] = [𝛼𝛼,𝛽𝛽]                                                     (10) 
where [𝛼𝛼,𝛽𝛽] = �𝑥𝑥 ∗ 𝑦𝑦

𝑎𝑎
≤ 𝑥𝑥 ≤ 𝑏𝑏, 𝑐𝑐 ≤ 𝑦𝑦 ≤ 𝑑𝑑� assuming that 0 ∉ [𝑐𝑐,𝑑𝑑] for the division. 

In concrete terms, we have : 
[𝑎𝑎, 𝑏𝑏] + [𝑐𝑐,𝑑𝑑] = [𝑎𝑎 + 𝑐𝑐, 𝑏𝑏 + 𝑑𝑑]                                                                (11) 
[𝑎𝑎, 𝑏𝑏] − [𝑐𝑐,𝑑𝑑] = [𝑎𝑎 − 𝑑𝑑, 𝑏𝑏 − 𝑐𝑐]                                                                (12) 

[𝑎𝑎, 𝑏𝑏] × [𝑐𝑐,𝑑𝑑] = [{𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏, 𝑏𝑏𝑏𝑏} , {𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏, 𝑏𝑏𝑏𝑏} ]            (13) 
[𝑎𝑎, 𝑏𝑏] ÷ [𝑐𝑐,𝑑𝑑] = ��𝑎𝑎

𝑐𝑐
, 𝑎𝑎
𝑑𝑑

, 𝑏𝑏
𝑐𝑐

, 𝑏𝑏
𝑑𝑑
�  , �𝑎𝑎

𝑐𝑐
, 𝑎𝑎
𝑑𝑑

, 𝑏𝑏
𝑐𝑐

, 𝑏𝑏
𝑑𝑑
� �                           (14) 

 
Definition 8: Let 𝐴̃𝐴,𝐵𝐵�  be two fuzzy numbers of respective alpha-slices    𝐴̃𝐴𝛼𝛼 = [𝐴𝐴𝐿𝐿(𝛼𝛼),𝐴𝐴𝑈𝑈(𝛼𝛼)] and 𝐵𝐵�𝛼𝛼 =
[𝐵𝐵𝐿𝐿(𝛼𝛼),𝐵𝐵𝑈𝑈(𝛼𝛼)]  (0 ≤ 𝛼𝛼 ≤ 1). The fuzzy arithmetic operations on 𝐴̃𝐴 and 𝐵𝐵�  are defined via their 𝛼𝛼-cuts in 
the following way: 

�𝐴̃𝐴  ⊕𝐵𝐵��𝛼𝛼 = 𝐴̃𝐴𝛼𝛼 + 𝐵𝐵�𝛼𝛼 = [𝐴𝐴𝐿𝐿(𝛼𝛼),𝐴𝐴𝑈𝑈(𝛼𝛼)] + [𝐵𝐵𝐿𝐿(𝛼𝛼),𝐵𝐵𝑈𝑈(𝛼𝛼)]          (15) 
�𝐴̃𝐴  ⊝𝐵𝐵��𝛼𝛼 = 𝐴̃𝐴𝛼𝛼 − 𝐵𝐵�𝛼𝛼 = [𝐴𝐴𝐿𝐿(𝛼𝛼),𝐴𝐴𝑈𝑈(𝛼𝛼)] − [𝐵𝐵𝐿𝐿(𝛼𝛼),𝐵𝐵𝑈𝑈(𝛼𝛼)]          (16) 
�𝐴̃𝐴  ⊗𝐵𝐵��𝛼𝛼 = 𝐴̃𝐴𝛼𝛼 × 𝐵𝐵�𝛼𝛼 = [𝐴𝐴𝐿𝐿(𝛼𝛼),𝐴𝐴𝑈𝑈(𝛼𝛼)] × [𝐵𝐵𝐿𝐿(𝛼𝛼),𝐵𝐵𝑈𝑈(𝛼𝛼)]          (17) 
�𝐴̃𝐴  ⊘𝐵𝐵��𝛼𝛼 = 𝐴̃𝐴𝛼𝛼 ÷ 𝐵𝐵�𝛼𝛼 = [𝐴𝐴𝐿𝐿(𝛼𝛼),𝐴𝐴𝑈𝑈(𝛼𝛼)] ÷ [𝐵𝐵𝐿𝐿(𝛼𝛼),𝐵𝐵𝑈𝑈(𝛼𝛼)]          (18) 
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These 𝛼𝛼-These resultant cuts are to be calculated according to the formulas in relations (11) to (14) above 
(Sanga, S. S., & Jain, M. (2019).). 
Arithmetic of fuzzy numbers of the same type L-R 
 
Let 𝑀𝑀� = 〈𝑚𝑚,𝑎𝑎, 𝑏𝑏〉𝐿𝐿𝐿𝐿 and 𝑁𝑁� = 〈𝑛𝑛, 𝑐𝑐,𝑑𝑑〉𝐿𝐿𝐿𝐿 be two fuzzy numbers of the same L-R type (Sanga, S. S., & Jain, 
M. (2019).). The arithmetic operations on 𝑀𝑀� and 𝑁𝑁� are defined as follows (Babu, P. S., Kumar, K. S., & 
Chandan, K. (2022).: 

𝑀𝑀� ⊕𝑁𝑁� = 〈𝑚𝑚 + 𝑛𝑛,𝑎𝑎 + 𝑐𝑐, 𝑏𝑏 + 𝑑𝑑〉𝐿𝐿𝐿𝐿                                         (19) 
𝑀𝑀�  ⊝𝑁𝑁� = 〈𝑚𝑚 − 𝑛𝑛,𝑎𝑎 + 𝑑𝑑, 𝑏𝑏 + 𝑐𝑐〉𝐿𝐿𝐿𝐿                                          (20) 

𝑀𝑀�⨀𝑁𝑁� ≈ {〈𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚 + 𝑛𝑛𝑛𝑛 − 𝑎𝑎𝑎𝑎,𝑚𝑚𝑚𝑚 + 𝑛𝑛𝑛𝑛 + 𝑏𝑏𝑏𝑏〉𝐿𝐿𝐿𝐿  ,               𝑖𝑖𝑖𝑖 𝑀𝑀� ,𝑁𝑁� > 0 〈𝑚𝑚𝑚𝑚,−𝑚𝑚𝑚𝑚 − 𝑛𝑛𝑛𝑛 − 𝑏𝑏𝑏𝑏,−𝑚𝑚𝑚𝑚 −
𝑛𝑛𝑛𝑛 + 𝑎𝑎𝑎𝑎〉𝐿𝐿𝐿𝐿 ,         𝑖𝑖𝑖𝑖 𝑀𝑀� ,𝑁𝑁� < 0 〈𝑚𝑚𝑚𝑚,−𝑚𝑚𝑚𝑚 + 𝑛𝑛𝑛𝑛 + 𝑎𝑎𝑎𝑎,−𝑚𝑚𝑚𝑚 + 𝑛𝑛𝑛𝑛 − 𝑏𝑏𝑏𝑏〉𝐿𝐿𝐿𝐿 , 𝑖𝑖𝑖𝑖 𝑀𝑀� < 0,𝑁𝑁� > 0      (21) 

  1
𝑁𝑁�
≈ 〈1

𝑛𝑛
, 𝑑𝑑
𝑛𝑛(𝑛𝑛+𝑑𝑑)

, 𝑐𝑐
𝑛𝑛(𝑛𝑛−𝑐𝑐)

〉𝐿𝐿𝐿𝐿, 𝑁𝑁� > 0                                          (22) 

𝑀𝑀� ⊘𝑁𝑁� ≈ 〈𝑚𝑚
𝑛𝑛

, 𝑚𝑚𝑚𝑚
𝑛𝑛(𝑛𝑛+𝑑𝑑)

+ 𝑎𝑎
𝑛𝑛
− 𝑎𝑎𝑎𝑎

𝑛𝑛(𝑛𝑛+𝑑𝑑)
, 𝑚𝑚𝑚𝑚
𝑛𝑛(𝑛𝑛−𝑐𝑐)

+ 𝑏𝑏
𝑛𝑛

+ 𝑏𝑏𝑏𝑏
𝑛𝑛(𝑛𝑛−𝑐𝑐)

〉𝐿𝐿𝐿𝐿, 𝑀𝑀� ,𝑁𝑁� > 0     (23) 
Here, multiplication and division are defined by secant approximation rule (Panta, A. P., Ghimire, R. P., 
Panthi, D., & Pant, S. R. (2021).). 
 
FUZZY TRANSFORMS 
 
Fuzzy functions 
 
There are several types of fuzzy functions: constraint fuzzy functions, fuzzy functions by propagation of a 
fuzzy variable and fuzzy functions proper (Ritha, W., & Rajeswari, N. (2021).). 
 
Definition 9: (Panta, A. P., Ghimire, R. P., Panthi, D., & Pant, S. R. (2021).). : Let X, Y be two universes 
and 𝑃𝑃�(𝑌𝑌) the set of all fuzzy subsets on Y. The application  𝑓𝑓 : 𝑋𝑋 ⟶  𝑃𝑃�(𝑌𝑌), 𝑥𝑥 ↦ 𝐵𝐵� = 𝑓𝑓 (𝑥𝑥) is a fuzzy 
function if  

𝜇𝜇𝐵𝐵�(𝑦𝑦) = 𝜇𝜇𝑅𝑅�(𝑥𝑥,𝑦𝑦), ( ∀ (𝑥𝑥,𝑦𝑦) ∈ 𝑋𝑋×𝑌𝑌 ) (24)     
where 𝑅𝑅�  is a fuzzy relationship between the elements of 𝑋𝑋×𝑌𝑌. 
When 𝑋𝑋 = [𝑎𝑎, 𝑏𝑏], 𝑌𝑌 = 𝑅𝑅then  𝑃𝑃�(𝑌𝑌)  = 𝐹𝐹(𝑅𝑅) and 𝑓𝑓 is a fuzzy function of a real variable. This is the case 
for the expressions  𝑡𝑡 →  𝐴̃𝐴. 𝑡𝑡 + 𝐵𝐵� , 𝑡𝑡 → 𝑒𝑒𝑎𝑎�𝑡𝑡. 
 
Definition 10 (Wang, F. F. (2022).). : Let 𝑓𝑓(𝑡𝑡) a classical function of variable t. A fuzzy function, an 
extension of f, is an application denoted 𝑓𝑓 of 𝑅𝑅 in 𝐹𝐹(𝑅𝑅) such that 𝑓𝑓(𝑡𝑡) = 𝑍𝑍� has as parametric representations 
the 𝛼𝛼-cuts : 

𝑍𝑍�𝛼𝛼 = [𝑍𝑍𝐿𝐿(𝛼𝛼),𝑍𝑍𝑈𝑈(𝛼𝛼)]                                           (25) 
 
Definition 11 (Wang, F. F. (2022).). ∶  Let  𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) a real function of  𝑅𝑅𝑛𝑛 in  𝑅𝑅  and  𝐴̃𝐴1, … , 𝐴̃𝐴𝑛𝑛 𝑛𝑛 fuzzy 
subsets of  𝑅𝑅. Zadeh's extension principle allows to induce from 𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) a fuzzy function 
𝑓𝑓 : 𝐹𝐹𝑛𝑛(𝑅𝑅)  ⟶  𝐹𝐹(𝑅𝑅) such that 𝑓𝑓 �𝐴̃𝐴1, … , 𝐴̃𝐴𝑛𝑛�  is a fuzzy subset 𝐵𝐵�  of 𝑅𝑅 of which : 

⮚ The membership function is defined ∀𝑦𝑦 ∈ 𝑅𝑅|𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) = 𝑦𝑦  by : 

𝜇𝜇𝐵𝐵�(𝑦𝑦) = {��𝜇𝜇𝐴𝐴�1(𝑥𝑥1), … , 𝜇𝜇𝐴𝐴�𝑛𝑛(𝑥𝑥𝑛𝑛)� �    𝑖𝑖𝑖𝑖 𝑓𝑓−1(𝑦𝑦) ≠ ∅ 0                                                               𝑖𝑖𝑖𝑖 𝑓𝑓−1(𝑦𝑦) = ∅      
(26) 

⮚ The parametric representation is given  ∀𝛼𝛼 ∈ [0, 1] by : 
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𝐵𝐵�(𝛼𝛼) = �𝑓𝑓 �𝐴̃𝐴1, … , 𝐴̃𝐴𝑛𝑛��
𝛼𝛼

= 𝑓𝑓 �𝐴̃𝐴1(𝛼𝛼), … , 𝐴̃𝐴𝑛𝑛(𝛼𝛼)�                  (27) 

This definition establishes the compatibility between the Zadeh extension principle approach and the 
arithmetic of alpha-slices (Zhang, Q., Sun, H., Gao, X., Wang, X., & Feng, Z. (2022).). 
For example, the expressions  𝑧̃𝑧 = 2𝑥𝑥�+10

3𝑥𝑥�+4
   and  𝑧̃𝑧 = 𝐴𝐴�𝑥𝑥�+𝐵𝐵�

𝐶̃𝐶𝑥𝑥�+𝐷𝐷�
  can be considered as fuzzy functions, extensions 

of the classical functions  ℎ(𝑥𝑥) = 2𝑥𝑥+10
3𝑥𝑥+4

    and   𝑔𝑔(𝑥𝑥1,𝑥𝑥2,𝑥𝑥3, 𝑥𝑥4,𝑥𝑥 ) = 𝑥𝑥1𝑥𝑥+𝑥𝑥2
𝑥𝑥3𝑥𝑥+𝑥𝑥4

 . 
 
Fuzzy Laplace Transforms 
 
Definition 12 (Gong, Z., & Hao, Y. (2019).). : Let 𝑓𝑓(𝑡𝑡) a fuzzy function and 𝑠𝑠 a real parameter. The fuzzy 
Laplace transform of 𝑓𝑓(𝑡𝑡) is a fuzzy function defined by : 

𝐹𝐹�(𝑠𝑠) = 𝐿𝐿�𝑓𝑓(𝑡𝑡)� = ∫∞0 𝑒𝑒−𝑠𝑠𝑠𝑠𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑 = ∫𝜏𝜏0 𝑒𝑒−𝑠𝑠𝑠𝑠𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑 , (28) 
(insofar as this limit exists). 

With respect to its parametric representations, the fuzzy transform of 𝑓𝑓(𝑡𝑡) is written as : 
𝐹𝐹�(𝑠𝑠,𝛼𝛼) = 𝐿𝐿�𝑓𝑓(𝑡𝑡,𝛼𝛼)� = �𝐿𝐿[𝑓𝑓𝐿𝐿(𝑡𝑡,𝛼𝛼)], 𝐿𝐿[𝑓𝑓𝑈𝑈(𝑡𝑡,𝛼𝛼)]�, 0 ≤ 𝛼𝛼 ≤ 1       (29) 

where     {𝐿𝐿[𝑓𝑓𝐿𝐿(𝑡𝑡,𝛼𝛼)] = ∫∞0 𝑒𝑒−𝑠𝑠𝑠𝑠𝑓𝑓𝐿𝐿(𝑡𝑡,𝛼𝛼)𝑑𝑑𝑑𝑑 𝐿𝐿[𝑓𝑓𝑈𝑈(𝑡𝑡,𝛼𝛼)] = ∫∞0 𝑒𝑒−𝑠𝑠𝑠𝑠𝑓𝑓𝑈𝑈(𝑡𝑡,𝛼𝛼)𝑑𝑑𝑑𝑑                                 
(30) 

Example: Let 𝑎𝑎� = (3, 4, 5) a triangular fuzzy number and 𝑓𝑓(𝑡𝑡) = 𝑒𝑒𝑎𝑎�𝑡𝑡 a fuzzy function. Then by definition, 
𝐹𝐹�(𝑠𝑠) = ∫∞0 𝑒𝑒−𝑠𝑠𝑠𝑠𝑒𝑒𝑎𝑎�𝑡𝑡𝑑𝑑𝑑𝑑 = 1

𝑠𝑠−𝑎𝑎�
. 

 
But,    

𝑎𝑎�𝛼𝛼 =  [3 + 𝛼𝛼, 5 − 𝛼𝛼] and  𝑓𝑓(𝑡𝑡,𝛼𝛼) = �𝑒𝑒(3+𝛼𝛼)𝑡𝑡, 𝑒𝑒(5−𝛼𝛼)𝑡𝑡�. 
So the representation 𝛼𝛼-slices of the transform of 𝑓𝑓(𝑡𝑡) = 𝑒𝑒𝑎𝑎�𝑡𝑡 is given by : 

𝐹𝐹�(𝑠𝑠,𝛼𝛼) = �∫∞0 𝑒𝑒−𝑠𝑠𝑠𝑠𝑒𝑒(3+𝛼𝛼)𝑡𝑡𝑑𝑑𝑑𝑑,∫∞0 𝑒𝑒−𝑠𝑠𝑠𝑠𝑒𝑒(5−𝛼𝛼)𝑡𝑡𝑑𝑑𝑑𝑑� = � 1
𝑠𝑠−𝛼𝛼−3

, 1
𝑠𝑠+𝛼𝛼−5

�. 
 
Properties: Like classical transforms, fuzzy Laplace transforms also have properties such as linearity, 
translation theorems, derivation theorems, whose eloquent proofs can be found in (Gong, Z., & Hao, Y. 
(2019).).  
 
FUZZY WAITING SYSTEM 𝐹𝐹 𝑀𝑀/ 𝐹𝐹 𝐺𝐺/1  
 
Classical M/G/1 system and Laplace Transforms 
 
The Laplace transform plays a crucial role in the calculation of performance measures of a classical non-
Markovian system M/G/1; this is done through the Laplace transform of the general service law G, defined 
by : 

𝐵𝐵∗(𝑠𝑠) =  ∫∞0 𝑒𝑒−𝑠𝑠𝑠𝑠𝑏𝑏(𝑡𝑡)𝑑𝑑𝑑𝑑,                                                  (31) 
where 𝑏𝑏(𝑡𝑡) is the probability density of this general law.  
On the one hand, this Laplace transform 𝐵𝐵∗(𝑠𝑠) transform is used in the definition of the generating function 
of the stationary probabilities of the system given by (Gong, Z., & Hao, Y. (2019).). : 
 

𝐺𝐺(𝑧𝑧) = (1 − 𝜌𝜌) (1−𝑧𝑧)𝐵𝐵∗(𝜆𝜆−𝜆𝜆𝜆𝜆)
𝐵𝐵∗(𝜆𝜆−𝜆𝜆𝜆𝜆)−𝑧𝑧

                                          (32) 
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where 𝜆𝜆 and 𝜌𝜌 = 𝜆𝜆𝑚𝑚1 are respectively the average arrival rate of customers in the system and the traffic 
rate in the system (𝑚𝑚1 being the first order moment of the G law). 
 
On the other hand, 𝐵𝐵∗(𝑠𝑠) intervenes in the analysis of the variable 𝑊𝑊 distribution of the residence (and 
waiting) times of a 𝑊𝑊𝑞𝑞 of a customer in the system (the queue) via its Laplace transform defined by :  

𝑊𝑊∗(𝑠𝑠) = (1 − 𝜌𝜌) 𝑠𝑠𝐵𝐵∗(𝑠𝑠)
𝜆𝜆𝜆𝜆∗(𝑠𝑠)−𝜆𝜆+𝑠𝑠

    and   𝑊𝑊𝑞𝑞
∗(𝑠𝑠) = (1 − 𝜌𝜌) 𝑠𝑠

𝜆𝜆𝐵𝐵∗(𝑠𝑠)−𝜆𝜆+𝑠𝑠
       (33) 

This allows us to derive the average length of stay and waiting time of a customer as a first order moment 
of the variable 𝑊𝑊 (variable 𝑊𝑊𝑞𝑞) : 

𝜏𝜏𝑠𝑠 = (−1) 𝑑𝑑𝑊𝑊
∗(𝑠𝑠)
𝑑𝑑𝑑𝑑

(0)   and   𝜏𝜏𝑞𝑞 = (−1) 𝑑𝑑𝑊𝑊𝑞𝑞
∗(𝑠𝑠)

𝑑𝑑𝑑𝑑
(0)                     (34) 

Other performance measures such as the average number of customers in the system or in the queue are 
derived by applying Little's law:  

𝑁𝑁𝑠𝑠 = 𝜆𝜆. 𝜏𝜏𝑠𝑠   and 𝑁𝑁𝑞𝑞 = 𝜆𝜆. 𝜏𝜏𝑞𝑞                                         (35) 
 
Fuzzy system 𝐹𝐹 𝑀𝑀/ 𝐹𝐹 𝐺𝐺/1 and Fuzzy Laplace Transforms 
 
A fuzzy waiting system is defined as one with vague and imprecise descriptor parameters. In this case, the 
probability density of the general service law is a fuzzy function of a real variable 𝑏𝑏�(𝑡𝑡). Hence the 
opportunity of its analysis by the fuzzy Laplace transforms, object of this article. 
 
Being then in a fuzzy environment where the system's descriptor parameters are fuzzy, the probability 
density of the general service law 𝑏𝑏�(𝑡𝑡) admits a fuzzy Laplace transform of expression (Gong, Z., & Hao, 
Y. (2019).). : 
 

𝐵𝐵�∗(𝑠𝑠) = ∫∞0 𝑒𝑒−𝑠𝑠𝑠𝑠𝑏𝑏�(𝑡𝑡)𝑑𝑑𝑑𝑑                                     (36) 
On the one hand, by Zadeh's extension principle, the formulas in relation (33) above become : 

𝑊𝑊� ∗(𝑠𝑠) = (1 − 𝜌𝜌�) 𝑠𝑠𝐵𝐵�∗(𝑠𝑠)
𝑠𝑠−𝜆𝜆�+𝜆𝜆�𝐵𝐵�∗(𝑠𝑠)

    and   𝑊𝑊�𝑞𝑞
∗(𝑠𝑠) = (1 − 𝜌𝜌�) 𝑠𝑠

𝑠𝑠−𝜆𝜆�+𝜆𝜆�𝐵𝐵�∗(𝑠𝑠)
           (37) 

 
These are nothing more than fuzzy extensions of the Laplace transforms of the variables 𝑊𝑊 and 𝑊𝑊𝑞𝑞 of the 
residence and waiting times of a customer in the classical M/G/1 system (in the queue).   
 
On the other hand, although fuzzy, these expressions of relation (37) are functions of a real variable 𝑠𝑠. 
Hence the opportunity to exploit the properties of the moments of the variables 𝑊𝑊�  and 𝑊𝑊�𝑞𝑞 to define the 
average stay and waiting time of a customer in the system (the queue) by the formulas :  

𝜏̃𝜏𝑠𝑠 = (−1) 𝑑𝑑𝑊𝑊
� ∗(𝑠𝑠)
𝑑𝑑𝑑𝑑

(0)  and   𝜏̃𝜏𝑞𝑞 = (−1) 𝑑𝑑𝑊𝑊
�𝑞𝑞

∗(𝑠𝑠)
𝑑𝑑𝑑𝑑

(0)                    (38) 
 
It will therefore be sufficient to apply Little's Law to obtain the other performance measures of the FM/FG/1 
system, including : 

𝑁𝑁�𝑠𝑠 = 𝜆̃𝜆⨀𝜏̃𝜏𝑠𝑠    and   𝑁𝑁�𝑞𝑞 = 𝜆̃𝜆⨀𝜏̃𝜏𝑞𝑞                              (39) 
FM/F case study𝐸𝐸2/1 
 
Position of the problem 
 
As announced above, this case had just been successfully analyzed by Merlyn Margaret and her friends 
(Kannadasan, G., & Sathiyamoorthi, N. (2018).). Using the NLP approach, these authors showed that the 
problem of analysing a performance measure of a fuzzy expectation system 𝐹𝐹M/𝐹𝐹G/1 can be reduced to 
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the solution of a pair of non-linear parametric programs. After solving these PNLPs, they used the mean 
degree integral scheme defined by the relation below to defuzzify the obtained fuzzy features: 

𝛷𝛷(𝑧̃𝑧) =
∫10

𝛼𝛼
2�𝑍𝑍𝛼𝛼

𝐿𝐿+𝑍𝑍𝛼𝛼𝑈𝑈�𝑑𝑑𝑑𝑑

∫10 𝛼𝛼𝛼𝛼𝛼𝛼
= ∫10 𝛼𝛼(𝑍𝑍𝛼𝛼𝐿𝐿 + 𝑍𝑍𝛼𝛼𝑈𝑈)𝑑𝑑𝑑𝑑                           (40) 

It is a question of dealing with this system 𝐹𝐹M/𝐹𝐹G/1 by the fuzzy Laplace transform method as described 
in the previous subsection.  
 
The results obtained are defuzzified by the "integral centroid" approach named "COA method", i.e. "Center 
of Area" defined by (Fazlollahtabar, H., & Gholizadeh, H. (2019).). : 

�∫𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑍𝑍�) 𝑥𝑥. 𝜇𝜇𝑍𝑍�(𝑥𝑥)𝑑𝑑𝑑𝑑� ÷ �∫𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑍𝑍�) 𝜇𝜇𝑍𝑍�(𝑥𝑥)𝑑𝑑𝑑𝑑�                          (41) 
where  𝑍𝑍∗ is the classical defuzzified value corresponding to the fuzzy result 𝑍𝑍� and 𝜇𝜇𝑍𝑍�(𝑥𝑥) is the membership 
function. 
 
Resolution 
 
In the classical model M/𝐸𝐸2/1model, the density of the service law 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸2 and its Laplace transform are 
given (cf. [5], [16] by : 

𝑏𝑏(𝑡𝑡) = (2𝜇𝜇)2𝑡𝑡𝑒𝑒−2𝜇𝜇𝜇𝜇  and   𝐵𝐵∗(𝑠𝑠) = � 2𝜇𝜇
𝑠𝑠+2𝜇𝜇

�
2
  (for 𝑘𝑘 = 2) (42) 

All calculations done, this allows to write the relation (33) as follows: 

 𝑊𝑊∗(𝑠𝑠) = 4𝜇𝜇(𝜇𝜇−𝜆𝜆)
𝑠𝑠2+(4𝜇𝜇−𝜆𝜆)𝑠𝑠+4𝜇𝜇(𝜇𝜇−𝜆𝜆)

   and   𝑊𝑊𝑞𝑞
∗(𝑠𝑠) = 𝜇𝜇−𝜆𝜆

𝜇𝜇
(𝑠𝑠+2𝜇𝜇)2

𝑠𝑠2+(4𝜇𝜇−𝜆𝜆)𝑠𝑠+4𝜇𝜇(𝜇𝜇−𝜆𝜆)
            (43) 

 
In the FM/𝐹𝐹𝐹𝐹𝑘𝑘/1 the service density is a fuzzy extension of the function 𝑏𝑏(𝑡𝑡) given by : 

𝑏𝑏�(𝑡𝑡) = (𝑘𝑘𝜇𝜇�)𝑘𝑘

(𝑘𝑘−1)!
𝑡𝑡𝑘𝑘−1𝑒𝑒−𝑘𝑘𝜇𝜇�𝑡𝑡                                                  (44) 

By a simple integration calculation, we can establish that : 

𝐵𝐵�∗(𝑠𝑠) = ∫∞0 𝑒𝑒−𝑠𝑠𝑠𝑠𝑏𝑏�(𝑡𝑡)𝑑𝑑𝑑𝑑 = � 𝑘𝑘𝜇𝜇�
𝑠𝑠+𝑘𝑘𝜇𝜇�

�
𝑘𝑘

                                     (45) 

Or  

  𝐵𝐵�∗(𝑠𝑠) = � 2𝜇𝜇�
𝑠𝑠+2𝜇𝜇�

�
2
   for  𝑘𝑘 = 2                                      (46) 

Therefore: 

𝑊𝑊� ∗(𝑠𝑠) = 4𝜇𝜇�(𝜇𝜇�−𝜆𝜆�)
𝑠𝑠2+�4𝜇𝜇�−𝜆𝜆��𝑠𝑠+4𝜇𝜇�(𝜇𝜇�−𝜆𝜆�)

   and   𝑊𝑊𝑞𝑞
∗(𝑠𝑠) = 𝜇𝜇�−𝜆𝜆�

𝜇𝜇�
(𝑠𝑠+2𝜇𝜇�)2

𝑠𝑠2+�4𝜇𝜇�−𝜆𝜆��𝑠𝑠+4𝜇𝜇�(𝜇𝜇�−𝜆𝜆�)
        (47) 

And according to relation (38) above, we have :  

𝜏̃𝜏𝑠𝑠 = (−1) 𝑑𝑑𝑊𝑊�
∗(𝑠𝑠)
𝑑𝑑𝑑𝑑

(0) = 3𝜆𝜆�

4𝜇𝜇�(𝜇𝜇�−𝜆𝜆�)
+ 1

𝜇𝜇�
  and  𝜏̃𝜏𝑞𝑞 = (−1) 𝑑𝑑𝑊𝑊

�𝑞𝑞
∗(𝑠𝑠)

𝑑𝑑𝑑𝑑
(0) = 3𝜆𝜆�

4𝜇𝜇�(𝜇𝜇�−𝜆𝜆�)
    (48)  

 
Numerical example 
 
Statement  
 
Consider a waiting system in which customers arrive according to a Poisson process with an imprecise 
average rate of about 1 customer per minute. Let us also assume that the service time is distributed according 
to a𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸2 process with an imprecise mean of about 1/3. Let us determine the average time a customer 
stays in the system and waits in the queue respectively.   
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Resolution procedure  
 
To say that the average service time of𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸2 is about 1/3 means that the service rate is about 3. 
Since these two descriptors are vague and imprecise, we will proceed as follows:  

1. Represent these parameters by two triangular fuzzy numbers of modes 1 and 3 respectively: 𝜆̃𝜆 =
�1
2

, 1, 3
2
� and 𝜇𝜇� = (2, 3, 4)  for example, then write them in L-R form; 

2. Apply the formulas in relation (48), according to the fuzzy Laplace transform approach; 
3. Use L-R fuzzy number arithmetic (see relations (19) to (23)) to obtain the expected fuzzy results; 
4. Defuzzify these results by relation (41) as announced in 4.3.1 above.  

 
Results obtained 
 
1. Fuzzy numbers 𝜆̃𝜆 = �1

2
, 1, 3

2
� and 𝜇𝜇� = (2, 3, 4) have the form L-R : 

𝜆̃𝜆 = 〈1, 1
2

, 1
2
〉𝐿𝐿𝐿𝐿  and  𝜇𝜇� = 〈3, 1, 1〉𝐿𝐿𝐿𝐿 

2. From the formulas in relation (48), 

 𝜏̃𝜏𝑠𝑠 = 3𝜆𝜆�

4𝜇𝜇�(𝜇𝜇�−𝜆𝜆�)
+ 1

𝜇𝜇�
=

3〈1,12,12〉𝐿𝐿𝐿𝐿

4〈3,1,1〉𝐿𝐿𝐿𝐿�〈3,1,1〉𝐿𝐿𝐿𝐿−〈1,12,12〉𝐿𝐿𝐿𝐿�
+ 1

〈3,1,1〉𝐿𝐿𝐿𝐿
                      (49) 

𝜏̃𝜏𝑞𝑞 = 3𝜆𝜆�

4𝜇𝜇�(𝜇𝜇�−𝜆𝜆�)
=

3〈1,12,12〉𝐿𝐿𝐿𝐿

4〈3,1,1〉𝐿𝐿𝐿𝐿�〈3,1,1〉𝐿𝐿𝐿𝐿−〈1,12,12〉𝐿𝐿𝐿𝐿�
                                              (50) 

But,  
3〈1, 1

2
, 1
2
〉𝐿𝐿𝐿𝐿 = 〈3, 3

2
, 3
2
〉𝐿𝐿𝐿𝐿 ; 1

〈3,1,1〉𝐿𝐿𝐿𝐿
≃ 〈1

3
, 1
12

, 1
6
 〉𝐿𝐿𝐿𝐿 ;  

 4〈3, 1, 1〉𝐿𝐿𝐿𝐿 = 〈12, 4, 4〉𝐿𝐿𝐿𝐿  and  〈3, 1, 1〉𝐿𝐿𝐿𝐿 − 〈1, 1
2

, 1
2
〉𝐿𝐿𝐿𝐿 = 〈2, 3

2
, 3
2
〉𝐿𝐿𝐿𝐿. 

Thus, according to the secant approximation formula of relations (21) to (23), the results are : 

4〈3, 1, 1〉𝐿𝐿𝐿𝐿 �〈3, 1, 1〉𝐿𝐿𝐿𝐿 − 〈1,
1
2

,
1
2
〉𝐿𝐿𝐿𝐿� = 〈12, 4, 4〉𝐿𝐿𝐿𝐿 ⊗ 〈2,

3
2

,
3
2
〉𝐿𝐿𝐿𝐿 

≃ 〈24, 20, 32〉𝐿𝐿𝐿𝐿 
Hence, 

𝜏̃𝜏𝑠𝑠 ≃ 〈1
8

, 9
56

, 1〉𝐿𝐿𝐿𝐿 + 〈1
3

, 1
12

, 1
6
 〉𝐿𝐿𝐿𝐿 ≃ 〈11

24
, 41
168

, 7
6
〉𝐿𝐿𝐿𝐿                     (51) 

𝜏̃𝜏𝑞𝑞 =
〈3,32,32〉𝐿𝐿𝐿𝐿 

〈24,20,32〉𝐿𝐿𝐿𝐿
≃ 〈1

8
, 9
56

, 1〉𝐿𝐿𝐿𝐿                                                    (52) 
These approximate results are none other than the triangular fuzzy numbers  

              𝜏̃𝜏𝑠𝑠 ≃ � 3
14

, 11
24

, 13
8
�   and   𝜏̃𝜏𝑞𝑞 ≃ �−1

28
, 1
8

, 9
8
�                     (53) 

of modal values 11
24

 and 1
8
  (units of time) respectively. 

 
3. Applying Little's formula and the secant approximation of the product of two fuzzy numbers of the same 

type L-R allows us to obtain the other performance measures, namely the average number of customers 
in the system and in the queue, i.e.  𝑁𝑁�𝑠𝑠 =  𝜆̃𝜆⨀𝜏̃𝜏𝑠𝑠 and  𝑁𝑁�𝑞𝑞 =  𝜆̃𝜆⨀𝜏̃𝜏𝑞𝑞 :  

𝑁𝑁�𝑠𝑠 =  𝜆̃𝜆⨀𝜏̃𝜏𝑠𝑠 = 〈1, 1
2

, 1
2
〉𝐿𝐿𝐿𝐿⨀〈

11
24

, 41
168

, 7
6
〉𝐿𝐿𝐿𝐿 ≃ 〈11

24
, 59
168

, 95
48
〉𝐿𝐿𝐿𝐿            (54) 

𝑁𝑁�𝑞𝑞 =  𝜆̃𝜆⨀𝜏̃𝜏𝑞𝑞 = 〈1, 1
2

, 1
2
〉𝐿𝐿𝐿𝐿⨀〈

1
8

, 9
56

, 1〉𝐿𝐿𝐿𝐿 ≃ 〈1
8

, 1
7

, 25
16
〉𝐿𝐿𝐿𝐿                   (55) 

In triangular writing, we have : 
          𝑁𝑁�𝑠𝑠 ≈ � 3

28
, 11
24

, 39
16
�       and   𝑁𝑁�𝑞𝑞 ≈ �−1

56
, 1
8

, 27
16
�                                      (56) 
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of modal values  11
24

 and  1
8
 (customers per unit of time) respectively. 

 
4. Finally, the defuzzification of the results obtained by relation (41) requires us to first define their 

membership functions by relation (6), and then to proceed with the various calculations required: 
 1° For  𝜏̃𝜏𝑠𝑠 ≃ � 3

14
, 11
24

, 13
8
�the membership function is given by : 

𝜇𝜇𝜏𝜏�𝑠𝑠(𝑥𝑥) = {168𝑥𝑥−36
41

 ,   𝑖𝑖𝑖𝑖 3
14
≤ 𝑥𝑥 ≤  11

24
  39−24𝑥𝑥

28
 ,    𝑖𝑖𝑖𝑖 11

24
≤ 𝑥𝑥 ≤  13

8
 0  ,                     𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                               

(57) 

𝜏𝜏𝑠𝑠∗ = �∫
11
24
3
14

𝑥𝑥. 168𝑥𝑥−36
41

𝑑𝑑𝑑𝑑 + ∫
13
8

11
24

𝑥𝑥. 39−24𝑥𝑥
28

𝑑𝑑𝑑𝑑� ÷ �∫
11
24
3
14

168𝑥𝑥−36
41

𝑑𝑑𝑑𝑑 + ∫
13
8

11
24

39−24𝑥𝑥
28

𝑑𝑑𝑑𝑑�   

= 0.781 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ; 
2° For 𝜏̃𝜏𝑞𝑞 ≃ �−1

28
, 1
8

, 9
8
�we have : 

𝜇𝜇𝜏𝜏�𝑞𝑞(𝑥𝑥) = {56𝑥𝑥+2
9

,   𝑖𝑖𝑖𝑖 −1
28
≤ 𝑥𝑥 ≤  1

8
 9−8𝑥𝑥

8
 ,     𝑖𝑖𝑖𝑖  1

8
≤ 𝑥𝑥 ≤  9

8
 0  ,                   𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                             (58) 

     𝜏𝜏𝑞𝑞∗ = �∫
1
8
−1
28

𝑥𝑥. 56𝑥𝑥+2
9

𝑑𝑑𝑑𝑑 + ∫
9
8
1
8

𝑥𝑥. 9−8𝑥𝑥
8

𝑑𝑑𝑑𝑑� ÷ �∫
1
8
−1
28

56𝑥𝑥+2
9

𝑑𝑑𝑑𝑑 + ∫
9
8
1
8

9−8𝑥𝑥
8

𝑑𝑑𝑑𝑑�  

= 0.405  𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑜𝑜𝑓𝑓 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ; 
3° For  𝑁𝑁�𝑠𝑠 ≈ � 3

28
, 11
24

, 39
16
�the membership function is given by : 

𝜇𝜇𝑁𝑁�𝑠𝑠(𝑥𝑥) = {168𝑥𝑥−18
59

   𝑖𝑖𝑖𝑖  3
28
≤ 𝑥𝑥 ≤  11

24
 117−48𝑥𝑥

95
   𝑖𝑖𝑖𝑖   11

24
≤ 𝑥𝑥 ≤  39

16
 0                       𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                          

(59) 

𝑁𝑁𝑠𝑠∗ = �∫
11
24
3
28

𝑥𝑥. 168𝑥𝑥−18
59

𝑑𝑑𝑥𝑥 + ∫
39
16
11
24

𝑥𝑥. 117−48𝑥𝑥
95

𝑑𝑑𝑑𝑑� ÷ �∫
11
24
3
28

168𝑥𝑥−18
59

𝑑𝑑𝑑𝑑 + ∫
39
16
11
24

117−48𝑥𝑥
95

𝑑𝑑𝑑𝑑� =

1.000  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ; 
 or  60 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝 ℎ𝑜𝑜𝑜𝑜𝑜𝑜 if the unit of time is the 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚. 

4° For  𝑁𝑁�𝑞𝑞 ≈ �−1
56

, 1
8

, 27
16
�we have : 

𝜇𝜇𝑁𝑁�𝑞𝑞(𝑥𝑥) = {56𝑥𝑥+1
8

 , 𝑖𝑖𝑖𝑖 −1
56
≤ 𝑥𝑥 ≤  1

8
  27−16𝑥𝑥

25
 , 𝑖𝑖𝑖𝑖  1

8
≤ 𝑥𝑥 ≤  27

16
  0    ,                 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                                          

(60) 

𝑁𝑁𝑞𝑞∗ = �∫
1
8
−1
56

𝑥𝑥. 56𝑥𝑥+1
8

𝑑𝑑𝑑𝑑 + ∫
27
16
1
8

𝑥𝑥. 27−16𝑥𝑥
25

𝑑𝑑𝑑𝑑� ÷ �∫
1
8
−1
56

56𝑥𝑥+1
8

𝑑𝑑𝑑𝑑 + ∫
27
16
1
8

27−16𝑥𝑥
25

𝑑𝑑𝑑𝑑�  

= 0.598  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 
Or  36  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝 ℎ𝑜𝑜𝑜𝑜𝑜𝑜 if the minute is the chosen unit of time. 
 

Discussion  
 
We find that all modal values of the fuzzy results correspond exactly to the performance measures (average 
waiting time, average dwell time, average number of customers in the system and in the queue) of the 
classical model M/𝐸𝐸2/1 which can be obtained by the Pollaczeck-Khintchine formula mentioned above 
(Babu, P. S., Kumar, K. S., & Chandan, K. (2022).). 
 
As for the defuzzified values, they are all slightly higher than these modes which are performance measures 
of the classical model.  Shouldn't we see the effects of a fuzzy environment on the performance measures 
of a waiting system? 
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CONCLUSION  

In this paper, we have sought both to answer the question of what happens to the performance measures of 
a non-Markovian system in a fuzzy environment and to apply fuzzy transforms in the evaluation of these 
measures. 
 
To achieve this, we used both the L-R arithmetic of triangular fuzzy numbers and especially the Zadeh 
extension principle to obtain the fuzzy transform of the distribution of the dwell times of a customer in the 
system (the queue). 
 
The numerical example treated revealed that, when the descriptor parameters of a system are vague and 
uncertain, the performance measures, which are fuzzy numbers, have as modal values the performance 
measures of the corresponding classical model. 
 
The Laplace transform method is therefore still applicable in the evaluation of the performance measures 
of a fuzzy FM/FG/1 queueing system. Will this be the case for a fuzzy FG/ FM/1 queue? This is a question 
worth considering. 
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