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HIGHLIGHTS 
 

● Demonstration of the existence of fuzzy multi-resolution analyzes for the decomposition of a fuzzy 

signal 

● Obtaining the fuzzy spaces containing the details of the fuzzy signal by the existence of a fuzzy 

wavelet 

● Construction of a fuzzy wavelet 

● obtaining a fuzzy orthonormal basis of   ,,)(,1,0(2  RL  F ))(R  on which to decompose a fuzzy 

signal 

_____________________________________________________________________________________________ 

 

ABSTRACT 

Signal compression and data compression are techniques for storing and transmitting signals using fewer 

bits as possible for encoding a complete signal. A good signal compression scheme requires a good 

signal decomposition scheme. The decomposition of the signal can be done as follows: The signal is split 

into a low-resolution part, described by a smaller number of samples than the original signal, and a 

signal difference, which describes the difference between the low-resolution signal and the real coded 

signal. Our paper deals with the proofs of these properties in a fuzzy environment. The proof of one- 

dimensional multiresolution analysis is given. The concept of fuzzy wavelets is introduced and as a 

byproduct a special fuzzy space of details of a signal is given and an orthonormal basis of 

  ,,)(,1,0(2  RL F ))(R decomposing the fuzzy signal is obtained.  

 

Keywords: Fuzzy image, fuzzy multiresolution analyzes, fuzzy basis functions, fuzzy basis Riesz, fuzzy 

orthonormal basis. 
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INTRODUCTION 

The one-dimensional multiresolution analysis of )(2 RL  is an appropriate tool for wavelet study it, allows 

in particular, the construction of an orthonormal bases (Mallat, 1999; Meyer, 1987; Daubechies, 1992; 

Mehra, 2018). 

The multiresolution analysis of a sequence of nested and closed subspaces +−= ,.....,)( jjV  satisfying the 

following properties: 

1) 1, + jj VVZj . 

2) 1)2()(, + jj VtfVtfZj   

3) 00 )()(, VktfVtfZk −  

4)  0lim ==
+

−=−→


j

j

j

j VV . 

5) ==
+

−=+→


j

j

j

j VVlim )(2 RL  

Moreover, there exist θ ϵ )(2 RL  such that {θ(t - n)}nϵZ is a Riesz basis of V0 . 

A function f ϵ )(2 RL is approximated at any level j of this analysis, and the approximation inVj is twice 

finer than in Vj - 1 for every j = - ∞, ….., +∞.  

 
Problematic 

        

This multiresolution analysis defines f in )(2 RL using an orthonormal basis, as a sum of details. 

The paper deals with this analysis in a fuzzy environment. 

     
Methodology  

       
Our methodological scheme follows the following steps: 

- Fuzzy multi-resolution analysis ; 

- Detail spaces and wavelets ; 

- Construction of the fuzzy wavelet ; 

- Fuzzy orthonormal bases of   ,,)(,1,0(2  RL  F .))(R  

 

Interest of the subject 
 

      The interest of our work is that it takes into account the fuzzy environment in the signal  

decomposition by one-dimensional multiresolution analysis in wavelet theory.        

 

Results obtained: 

 

      The main result is multiresolution analysis and fuzzy orthonormal bases of 

  ,,)(,1,0(2  RL  F ))(R  

          
       Consider an interval [a, b] as a fuzzy universe set. 
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The fuzzy partition of this universe is given by the fuzzy subsets of the universe [a, b] which admit the 

properties given in the following definition: 

 

Definition 1.1 (Perfilieva, 2006; Ohlan, 2021; Bloch, 2015 ; Sussner, 2016)  
 

Consider x1 ˂ ......... ˂ xn fixed nodes such that x0 = a and xn+1 = b with n ≥ 2. 

Then the fuzzy sets A1,......., An , of membership functions A1 (x) ,........., An (x) defined on [a, b], form a 

fuzzy partition of [a, b] if they satisfy the following conditions for  

k = 1,.........,n : 

(1) Ak  : [a, b]→  [0, 1], Ak (xk ) = 1 ; 

(2) Ak (x) = 0 if x  ( xk-1, xk+1  ) ; 

(3) Ak is continuous; 

(4) Ak , for k = 2,........,n , increases strictly on [xk-1 , xk ] and decreases strictly on  

[xk , xk+1 ] for k = 1,.........., n - 1. 

(5) For all x  [a, b], 1)(
1

=
=

xA
n

k

k  

And the membership functions that can be identified with the sets A1,.........,An are called fuzzy basis 

functions. 
 

 

Fuzzy multi-resolution analysis       
 
     Let  f : [0, 1] → F (R) a fuzzy function and  K (R) be the set of closed  intervals of R  

Then α-cuts of   )(, RKfff =


 . 

 

Theorem 1.2 

There is a sequence of fuzzy sets
 

ZjjV
  forming a multi-resolution analysis of 

  ,,)(,1,0(2  RL  F .))(R  

                                                                

Proof              

        Consider a sequence
 

ZjjV
  in   ,,)(,1,0(2  RL F ))(R

 and ꓯ αϵ [0, 1], let 
 

jj VV =
  

the α – level sets of Vj .  

We have: 
)(RKV j 

 .  

Assume that this sequence of closed intervals is nested and verifies the following properties: 

1) 
 

;, 1


+ jj VVZj  

      2)  → 1,0:, fZj  F ;)2()())( 1





 + jj VtfVtfthatsuchR  

      3)  ;)()(, 00





 VktfVtfZk −

 

      4) 
 ;0lim ==

+

−=
−→


j

jj
j

VV 
 

      5)  
+

−=
+→

=
j

jj
j

VV lim
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∀ αϵ [0, 1], we shown in lemma 1.4 the existence of a Riesz basis {θα (t - n)}nϵ Z . 

Note that j stands for resolution and represents the level of analysis of the function f   ; the  

approximation in

jV  of f  is twice fine as in


1−jV  but half good as that in


1+jV  . 

 

Define  
 = vV j F   

jVvR :)(
  (1.1) 

Then for vϵ Vj , we have : 
.1


 + jj VVv

  

Therefore,


 1+ jVv
 and 

v ϵ
1+jV  .

 

The choice of v being arbitrary, we have : 

1') ZjVV jj  + ,1  

2') By definition, if  1,0 
 jVtf )(  , then : jVtf )(  and by 2), jVtf )(  1)2( + jVtf

  

     
Zj   .                  

3') Similarly, if  1,0  ,


 0)( Vtf  , then : 0)( Vtf   and by 3), 0)( Vtf  
0)( Vktf −

 

     
Zk  .                       

      Note that : 

(i)




j

N

Nj
j

N

Nj

VV
−=−=

=





  .  

(ii)




j

N

Nj
j

N

Nj

VV
−=−=

=





  .

 

5') From (ii), we have : 

    

j

N

NjN
V

−=+→
lim  =


j

j

V
+

−=


 
and .limlim 



j
j

j

N

NN
j

N

NjN
VVV

+

−=−→−=+→
=





=





  

Hence, j

N

NjN
V

−=+→
lim   = j

j

V
+

−=

  .   

Since ,1+ jj VV  we have 
j

j
V

+→
lim  = j

j

V
+

−=

  . 

4') 

jV  forms decreasing nested intervals when −→j  that is ,)1(


jj VV −+−   so we have :  

      andV j
j

0=


−=

  










===

−→−=+→
j

N

NN
j

N

Nj
j

j
VVV  lim0lim . 

To complete the proof of theorem 1.2, we need to show the existence of a Riesz basis for 


0V
 
and 

therefore, by (1.1) a Riesz basis for 0V .
 

This is done in lemma 1.4 

 

Definition 1.3 (Mallat, 1999 ; Le Cadet, 2004) 

       A family of vectors 
Znne


 is a Riesz basis of H if it is linearly independent and there exist A ˃ 0 

and B ˃ 0 such that for any f   H, we can find a[n] with  
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  n

n

enaf 
+

−=

=  satisfactory   222
fBnafA

n

 
+

−=

 .
 

Note that this energy equivalence ensures that the development of f on 
Znne

  is numerically stable. 

   

       The following theorem, inspired by (Mallat, 1999), gives a necessary and sufficient condition for

 
Zn

nt


− )(
 to be a Riesz basis of 


0V  .  

 

 
 
Lemma 1.4 

      A family 
Zn

nt


−(  , α  [0, 1], is a Riesz basis of


0V  if and only if   

 0 ˂ A and 0 ˂ B such that   ,−w  , ( )
A

kw
B Zk

1
2

1
2

+ 




 
                               (1.2)                       

 

Proof 

(i) By definition,
 

Zn
nt


− )(

 is a Riesz basis of V0
α  if ꓯ f ϵ V0

α ,  

  )()( ntnatf
Zn

−=



  and there exist A ˃ 0 and B ˃ 0 such that 

  222
fBnafA

Zn




                                                                                                 (1.3)                             

  

The Fourier transform of f is
)2()(ˆ)(ˆ   kwwawf +=



 where 
  ,)(ˆ wi

Zn

enawa −



= w ϵ [- π, π]. 

By the Parseval identity, we have : 

        
  dwwana

Zn




=




2

0

22
)(ˆ

2

1

 

and 

      
.)(ˆ

2

1
)(

2

0

222
dwwfdttff ==



  

Using the periodicity of
)(ˆ wa

 , we have : 

      
.)2()(ˆ

2

1
2

2

0

22
dwkwwaf

Zk






+= 





 

And by (1.3), we have : ꓯ w ϵ [-π, π] : 

   
.)2(

2

22






+
Zk

kwfBf  

 

Hence  
( )





+
Zk

kw
B

2

2
1

 
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Similarly, we have : 

2

2

2
)2( fkwfA

Zk

+




 

which implies 
( ) .

1
2

2

A
kw

Zk

+




 

 

(2i) Conversely, if f verifies (1.2) then
 

Zn
nt


−

,
)(

 is a Riesz basis of V0
α if and only if ꓯ f ϵ V0

α and 

for any sequence (a(n))nϵZ  ⊂ l2 , we have :  

                    
  222

fBnafA
Zn


  

Suppose that for one of these sequences, (1.2) is not verified. 

Then ꓯ w ϵ[-π, π ],
 )(ˆ wa , with support in [-π, π], such that     

                
B

1
( ) .)2(

1
2

22










++
ZkZk

kw
A

orkw   
 

Let us first assume that for these w ϵ [-π, π ], we have B
kw

Zk

1
)2(

2






+  

 

So .)2()(ˆ
2

1
2

2

0

22
dwkwwaf

Zk






+= 





 

               

 


=
Zn

na
B

dwwa
B

22

0

2 1
)(ˆ

2

11 


 , that is  

Zn

nafB .
22

  

Assume also that for these w ϵ [-π, π ], we have : .)2(
1

2






+
Zk

kw
A

 
 

So 
dwkwwaf

Zk






+=

2
2

0

22
)2()(ˆ

2

1







 

  

22

0

2
)(ˆ

2

11
fdwwa

A





 

    221
fna

A Zn




 , that is   .
22

fAna
Zn




 

By this double contradiction, the reciprocal is well verified. 

                                       

 

Detail spaces and wavelets 
 

Definition 1.5 (Beg, 2013; Cheng, 2015 ; Huang, 2016)
 
 

 

Let Ak be a fuzzy basis function and let δk (x) be an other basis function satisfying all the conditions given 

in Definition 1.1 

Then there exists p ϵ N with p ˃ 1 such that δk (x) = Ak 
p (x)                                                     (1.4)           

where Ak 
p (x) = Ak (x) .................Ak (x) (p times), and δk (x) is called the fuzzy delta function. 

This implies that 


−



−
dxxAdxx kk )()(                                                                     (1.5)             
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                    and 1)( =


−
dxxAk                                                                                            (1.6)                  

 

Definition 1.6 (Beg, 2013; Cheng, 2015 ; Huang, 2016) 

 

Let Ak (x) ( for k = 0,........., n ) be fuzzy basis functions. 

{Ak (x)} are orthogonal fuzzy if 









=−

=

=


−

otherwise

kjx

kjx

dxxAxA

k

kj

,0

1,)(

,)(

)()( 



                                  

(1.7) 

where ε(x) is a function such that 


−



−
= dxxdxx k )()(                                          (1.8)            

where α is an arbitrary positive real number close to 0. 

 

Definition 1.7 (Beg, 2013) 

 

Consider a fuzzy basis function A(x) centered on the first node, that is k = 0. 

We define a displacement operator (Rk ) as follows: 

                                Ak (x) = Rk A(x)                                                                                           (1.9)                                                                                                                                         

 

Definition 1.8 (Beg, 2013) 

        The fuzzy scalar product is defined by :   k
m

k AAARA =


−=
,                                 (1.10)                  

where )()()()( mAmAmAA kk =                                                                                         (1.11)                                  

is an ordinary product. 

Furthermore, the sum of any 2 terms in (1.10) is calculated as follows: 

)12.1()()()()()()()()()()()()( nAAmAAnAAmAAnAAmAA kkkkkk −+=  

 

Definition 1.9 (Beg, 2013) 

 

Let Ak (x) = Rk A (x) (for k = 0,.........,n) be fuzzy basis functions satisfying the equations (1.6) and (1.7). 

Then {Ak (x)} are fuzzy orthogonal. This implies : 









=

=

=

otherwise

kx

kx

xARxA

k

k

,0

1,)(

0,)(

)(,)( 



 

            (1.13)        

where ,  is a scalar product. 

as 


−



−
= dxxdxx k )()(    , we can approximate )(,)( xARxA k  as follows: 



 =

=
otherwise

kx
xARxA

k

k
,0

0,)(
)(,)(



 

                                                                                          (1.14)                                                                                  

 

From this approximation, it is possible to orthogonalize the basis {θ (t - n)}nϵZ of V0 , and obtain an 

orthonormal basis {Ф(t - n)}nϵZ of V0 . 
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Thus, as {Ф(t - n)}nϵZ is an orthonormal basis of V0 , the properties (2') and (3') of fuzzy multiresolution 

analysis allow us to deduce that 
Zn

j
j

Znjn nt


 







−= )2(2 2   form a fuzzy orthonormal basis of Vj 

for any j ϵ Z. 

 

While these bases are suitable for approximation problems, they do not a priori have properties that 

facilitate the detection of singularities in an image; on the other hand, the details that are lost when going 

from a resolution j to a coarser resolution j – 1, are high-frequency components of the image.  

Let Wj -1 be the fuzzy space containing these details. 

 

In the following, we define the direct sum between two fuzzy sets by using α-cuts. 

        

Let PK (R) be the set of compact and convex subsets of R. 

It is known that ꓯ u ϵ F )(R  , the α - cut [u]α ϵ PK (R), 0 ≤ α ≤ 1. 

For every 0 ≤ α ≤ 1 and for every u, v ϵ F )(R , we define u+~ v using α-cuts [u+~ v]α as follows: 

  

Lemma 1.10 (Lakshmikantham, 2003; De Barros, 2017; Gomes, 2015 ; Mazandarani, 2021). 

 

Let u and v ϵ F )(R , then ꓯ α ϵ [0, 1] : [u+~ v ]α = [u]α + [v]α . 

 

We can define the direct sum between two fuzzy sets using α-cuts by : 

 

Definition 1.11 (Cognet, 2000; Grifone, 2019) 
 

   
vuw

D
= where : 

           .0=+=


vuwithvuw   

As 1+ jj VV , there is a subset Wj such that .1 j
D

jj WVV =+  

We define this relationship using the α-cuts by : 

 

Definition 1.12 

 


11 −− += jjj WVV
 
with   .011 =−−


jj WV 

 
The second condition implies orthogonality. 

 

Now we present fuzzy orthonormal bases of these detail spaces; they will have interesting properties for 

the detection of singularities in an image, and in particular for the compression problem. 

According to the definition of a fuzzy multiresolution analysis, we have :  

                                                                    
10 VV 
  

Since Ф(t) ϵ V0 , we have Ф(t) ϵ V1 ; hence, there exists a sequence (hk )kϵZ such that : 

.)2(2.)( ktht
Zk

k −=



 

Given Ф, this relation allows to construct hk (via its transfer function m0 (w), given in equation (1.16)). 

On the other hand,  
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.10 VW 
  

If Ψ(t) is a function of W0 , there exists a sequence (gk )kϵZ such that :  

                 
.)2(2.)( ktgt

Zk

k −=



 

This relationship and the previous one are called fuzzy two-scale relationships. 

These two relations allow us to construct a fuzzy wavelet Ψ such that  

{Ψ(t - n)}nϵZ be a fuzzy orthonormal basis of W0 . 

By compressing or expanding Ψ, we then construct fuzzy orthonormal bases of the other detail spaces:  

                          
  .)2(2 2 ZjforWofbasisfuzzyaisnt j

Zn

j
j

Znjn 








−=





 

Construction of Ψ 
 

Definition 1.13 (Kumwimba, 2016; Feng, 2001; Hesamian, 2022;  Chachi, 2018) 

 

Let vandu ~~  F )(R . 

We define the operator ••,  : F )(R x F )(R R→  by the equation  

 dvuvuvu UULL )~~~.~(~,~ 1

0
+=   for all α ϵ [0, 1]                                                          (1.15)                                                                       

Thus, the two filters g = (gn )nϵZ and h = (hn )nϵZ that appear in the two-scale relations are expressed in 

terms of Ф and Ψ: it is sufficient to do the scalar product above between each of the two relations and

)2(2 nt −  and to note 
Zk

kt


− )2(2   is orthonormal to obtain : 

    dnttntth LLUU

n  −+−=
1

0
)2(.)()2(.)(2                   ; 

    dnttnttg LLUU

n  −+−=
1

0
)2(.)()2(.)(2

  

Applying the Fourier transform to each of the scaling relationships, we obtain  

(Meyer, 1987; Daubechies, 1992) the equations : 

)
2

(ˆ.)
2

()(ˆ
0

wwmw  =                                                                                                          (1.16)                                                                                                                

)
2

(ˆ.)
2

()(ˆ
1

wwmw  =                                                                                                          (1.17)                        

where   
kwi

Zk

k ehwm 2

0 .
2

1
)( −



=   

            
kwi

Zk

k egwm 2

1 .
2

1
)( −



=  

are the transfer functions of the filters h
2

1
 and g

2

1
 . 

Let us look for a function Ф that is a smoothing kernel that is 1)0(ˆ =  and reapply (1.16) to ( )
2

ˆ w  , 

then to ( )
4

ˆ w  , and so on. 

Finally, we obtain: ( ) )
2

(ˆ

1

0 j

j

wmw 
+

=

=  . 
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This makes it possible to express Ф as a function of h in the case where the starting data of the problem is 

the filter h. 

Knowing m1 (w), the expression of the function Ψ in the case where the starting point of the problem is 

the filter g can be deduced by equation (1.17). 

 

Fuzzy orthonormal bases of   ,,)(,1,0(2  RL  F .))(R  
 
Theorem 1.14 
 

Let ............... 101  − VVV be a fuzzy multiresolution analysis of   ,,)(,1,0(2  RL F .))(R  
If Ψ is a fuzzy wavelet constructed according to the above procedure, then this wavelet provides a fuzzy 

orthonormal basis of   ,,)(,1,0(2  RL  F .))(R  

 

Proof 
 

To do this, it is sufficient to use definition 1.12 on Vj, then on Vj -1 , ... up to a certain level L to obtain :  

     
................ 11 −+ = j

DD
L

D
L

D
Lj WWWVV

 

By properties 4') and 5') of the fuzzy multiresolution analysis :   ,,)(,1,0(2  RL  F j
j

D WR
+

−=

=))(  that 

is: the space   ,,)(,1,0(2  RL  F ))(R
 is decomposed as an orthogonal sum of detail spaces at all 

resolutions. 

  

Consider a fuzzy function f of   ,,)(,1,0(2  RL  F ))(R
 . 

The previous formula allows us to decompose it on the fuzzy orthonormal bases defined on the spaces  

(Wj )jϵZ :  

  kjkjkj

Zj Zk

kj fdoùtdtf  ,)()( ,, == 
 

 

with the coefficients (dj,k )kϵZ corresponding to the wavelet coefficients of f at resolution j 

Thus, {Ψjk (t)}jϵZ, kϵZ defines a fuzzy orthonormal basis of   ,,)(,1,0(2  RL  F ))(R
 on which f is 

decomposed into a sum of finer and finer details as j increases. 

Note, again by properties 4') and 5') of the fuzzy multiresolution analysis, that we also have: 

  ,,)(,1,0(2  RL F ))(R .j
Lj

DL WV
+

=

=  

f   ,,)(,1,0(2  RL  F ))(R  is then decomposed as follows :
 

).()()( ,

,

, tdtctf kj

Zk

kj

LjZj

kL

Zk

kL  


+=
 

kL

Zk

kLc 


,    is the projection of f onto an approximation space VL ,
)(,

,

td kj

Zk

kj

LjZj




 contains all 

the details that were lost when approximating f onto VL . 

 

Restriction to the bounded interval [0, 1]: periodic fuzzy wavelet bases 
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Theorem 1.15 

Consider a fuzzy multiresolution analysis of     ,,)1,0(,1,0(2 L  F   .))1,0(  

Given a fuzzy wavelet Ψ, this wavelet allows us to obtain a fuzzy orthogonal basis of 

    ,,)1,0(,1,0(2 L  F   .))1,0(  
 

Proof 
 

In fact, since in this case the signals we manipulate are in practice of bounded support: we must define 

fuzzy wavelet bases on a bounded interval [0, 1]. 

 

To define a fuzzy wavelet basis on [0, 1], we start from a basis of  

  ,,)(,1,0(2  RL F ,))(R   .)2(2
,

2

,
ZnZj

j
j

ZnZjnj nt


 







−= 
 

The fuzzy wavelets Ψjn (t) spanning t = 0 or t = 1 will have to be adapted. 

The simplest method is to periodise the wavelets Ψjn and the function f. 

To do this, we define : 

).()()()( kttetktftf
k

jn

per

jn

k

per +=+= 
+

−=

+

−=


 

perper

jn fet
are periodic, of period 1. 

If the support of Ψjn lies in [0, 1], jn

per

jn  =
 (and even if the support of the fuzzy wavelet Ψ is not 

compact, on a small scale,
per

jn
 will tend to jn  ): the behaviour of the fuzzy inner wavelets is not 

affected. 
per

jn
 is defined in the same way by periodising the fuzzy scale functions. 

This gives that for all J ≥ 0, the family 

    
12.,.........0,,12,........,0, ,
−=−= jJ nJj

per

njn

per

nJ 
 is a fuzzy orthonormal basis of  

    ,,)1,0(,1,0(2 L F   .))1,0(  

The spaces of fuzzy approximations 
per

jV and the spaces of fuzzy details 
per

jW
 are of finite dimensional 

spaces. 

In other words, since
)()()2(

2,
ttt per

nj

per

jn

jper

jn j+
==+ 

 , at resolution j there are only 2j different 

fuzzy wavelets. 

The same applies to fuzzy scale functions. 

Thus,
 

Zk

per

jk

per

j vectV


= 
 is in fact finite-dimensional: 

.
2,

per

kj

per

jk j+
= 

 

Specifically, 
per

jV
 is of dimension 2j . 

In particular, V0 , the coarsest fuzzy approximation space, is of dimension 1: it is the set of constants on  

[0, 1]. 

We also have dim 
per

jW =  2j . 

This periodisation method has the advantage of being simple, but it can generate large wavelet 

coefficients at the edges, if the function f is not itself periodic. 
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Note, however, that when periodic boundary conditions are used, the notations can be abbreviated by 

writing Vj rather than 
per

jV , Ψjk instead of 
per

jk
,.......... 

 

Discussion 
 

Our results, in particular  the definition and the proof of a one-dimensional fuzzy multiresolution analysis, 

constitute our major and original contribution.  It allowed us to perform the decomposition of a fuzzy 

signal.  

 

CONCLUSION 
   
A good signal compression scheme requires a good signal decomposition scheme.  The signal is 

subdivided into a low-resolution part, which can be described by a smaller number of bits than the 

original signal, and a signal difference, which describes the difference between the low-resolution signal 

and the real coded signal. We have seen that, for a fuzzy signal, this decomposition can be obtained by 

one-dimensional fuzzy multiresolution analysis via the use of α-cuts. This fuzzy multiresolution analysis 

allowed the definition of the detail spaces as well as the constructions of a fuzzy wavelet and a fuzzy 

orthonormal basis of the space   ,,)(,1,0(2  RL  F ))(R  on which the signal is decomposed. 
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