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HIGHLIGHTS 

 Any direction of temperature difference-induced motion of a geometric fluid 

 The internal heat source is a factor in the fluid layer's temperature increase. 

 The oscillating motion phenomena are influenced by gravity 
 

ABSTRACT 

The onset of oscillatory Benard-Marangoni convection in a horizontal fluid layer with internal heat 
generation and a deformable free surface is studied using an analytical technique employing the classical 
linear stability theory. We consider the case when both the Rayleigh number and Marangoni number are 
linearly dependent. We obtained the analytical result for the expansion of the Rayleigh number in the limit 
of a very short wave. We found that the internal heat generation factor influences the leading order of 
Rayleigh number. 
 
Keywords: Bénard-Marangoni convection, Rayleigh-Bénard convection, Marangoni convection, free 
convection 
 

INTRODUCTION  

Convection is a type of energy diffusion process that occurs in a fluid and is important to a physical state. 
Convection is simply the movement of a geometric fluid caused by a temperature difference in any 
direction. If we examine the observations, we will discover that convection phenomena occur all around 
us, either naturally (free convection), as in geophysics (Knopoff, 1969; Plummer & McGeary 1991), or 
caused by human actions (forced convection), as in the formation of crystals in semiconductor production 
(Elliot, 1998; Schwabe, 1988; Ostrach, 1983). 
 
Wilson (1993) was the first to investigate convection involving internal heat generation, obtaining an 
analytical representation of the Marangoni number, M, and was followed by Char and Chiang (1994), who 
investigated the effect of rotation and internal heat generation at the beginning of Benard-Marangoni 
oscillating convection. The short-wave asymptotic analysis investigation of the onset of Marangoni 
oscillating convection with internal heat generation performed by Hashim (2001) using a single-layer model 
served as the inspiration for the work we carried out. 
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METHODOLOGY  

The mathematical modeling of the fluid is developed based on a single-layer fluid model as shown in Figure 
1. 

 
Figure 1: Single Layer Fluid Model 

 
A dimensionless linear equation for the case of the lower boundary layer with perfect heat conduction and 
affected by the internal heat generation factor based on the fluid model in Figure 1 can be expressed as 
follows: 
 

(𝐷ଶ − 𝑎ଶ) ቀ𝐷ଶ − 𝑎ଶ −
௦

௉ೝ
ቁ 𝑊 = 𝑎ଶ𝑅Θ,                                                                                                                             (1) 

 
(𝐷ଶ − 𝑎ଶ − 𝑠)Θ + [1 − 𝑄(1 − 2𝑧)]𝑤 = 0,                                                                                                       (2) 
 
with the boundaries conditions 𝑊 = 0ሬ⃗ , 𝐷𝑊 = 0ሬ⃗  dan θ = 0ሬ⃗  pada 𝑧 = 0 while the boundary conditions on 
the surface are free 𝑧 = 𝑑 can be expressed as follows: 
 
𝑠𝑓 − 𝑊 = 0,                                                                                                                                                         (3) 
 

𝐶௥ ቀ𝐷ଶ − 3𝑎ଶ −
௦

௉ೝ
ቁ 𝐷𝑊 − 𝑎ଶ(𝑎ଶ + 𝐵଴)𝑓 = 0,                                                                                               (4) 

 
(𝐷ଶ + 𝑎ଶ)𝑊 + 𝑎ଶ Γ𝑅(1 + 𝑄)𝑓] = 0,                                                                                                                 (5) 
 
𝐷Θ + 𝐵௜[Θ − (1 + 𝑄)𝑓] = 0.                                                                                                                              (6) 
 
with Γ𝑅 = 𝑀. Operator 𝐷 = 𝑑/𝑑𝑧 represents the differentiation of the vertical component 𝑧. Quantity 𝑊 =
𝑊(𝑧), Θ = Θ(𝑧) dan 𝑓 is the amplitude of the velocities in the vertical direction, the temperature in the 

vertical direction, and the deformable on the free surface. Parameter 𝑎 = ൫𝑎௫
ଶ + 𝑎௬

ଶ൯
଴.ହ

 represents the 
overall horizontal wave number and the parameter 𝑠 is referred to as the growth rate with 𝑁𝑦(𝑠) represents 
the growth rate of instability and 𝐾ℎ(𝑠) = ω represents the frequency. The dimensionless numbers used in 
this research are Biot number 𝐵௜ = ℎ𝑑/𝑘, Bond number 𝐵଴ = ρ଴𝑔𝑑ଶ/τ଴, Crispation number 𝐶௥ =
ρ଴νκ/τ଴𝑑, internal heat number Q = q𝑑ଶ/2κ∆T, Marangoni number 𝑀 = γ𝑑∆𝑇/ρ଴ν, Prandtl number 𝑃௥ =
ν/κ and Rayleigh number 𝑅 = 𝑞α𝑑ଷ∆𝑇/νκ. 
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Linearized Dimensionless Equations 
 
The solution for 𝑊(𝑧), Θ(𝑧), 𝑓 and 𝑅 are obtained from a linear equation without parameters by considering 
the imaginary quantity of the fluid velocity growth rate 𝑘ℎ(𝑠) = ω in the limit 𝑎 → ∞ for the case  
𝐶௥ ≠ 0. The system is said to be stable when the manipulation is shrinking over time if the real element of 
growth rate 𝑁𝑦(𝑠) < 0 and vice versa when 𝑁𝑦(𝑠) > 0. The onset of instability occurs when  
𝑁𝑦(𝑠) = 0 and the oscillation that occurs is steady if 𝐾ℎ(𝑠) = 0 and oscillates if 𝐾ℎ(𝑠) ≠ 0 as in our 
study.  
 
Numerical solutions for 𝑅 and 𝜔 in the limit 𝑎 → ∞ for the case of a turbulent fluid surface (𝐶௥ ≠ 0) have 
suggested the formation of a thin fluid layer of thickness 𝑂(1/𝑎) near the boundary 𝑧 = 1 whose 
coordinates can be written as 1 −  𝑧 = 𝑍/𝑎 (Hashim & Wilson, 1999). Motivated by this statement, we 
assume that the asymptotic solutions of 𝑊(𝑧), 𝑅, and 𝜔 are of the following forms: 
                       
W(𝑍) = ∑ ε௜ஶ

௜ୀ଴ 𝑊௜(𝑍),                                                                                                                                    (7) 
 
R = εିସ ∑ ε௜ஶ

௜ୀ଴ 𝑅௜,                                                                                                                                          (8) 
 
ω = εିଷ ∑ ε௜ஶ

௜ୀ଴ ω௜,                                                                                                                                       (9) 
 
while the asymptotic solutions for Θ and 𝑓 are stated as follows: 
 
Θ(𝑍) = ∑ ε௜ஶ

௜ୀ଴ Θ௜(𝑍),                                                                                                                                     (10) 
 
f = εଶ ∑ ε௜ஶ

௜ୀ଴ 𝑓௜.                                                                                                                                                  (11) 
 
Solving the governing equations (1) dan (2) with 𝐾ℎ(𝑠) = ω yields  
 

(𝐷ଶ − 𝑎ଶ) ቀ𝐷ଶ − 𝑎ଶ −
௜ன

௉ೝ
ቁ (𝐷ଶ − 𝑎ଶ − 𝑖ω)𝑊 + 𝑎ଶ𝑅[1 − 𝑄(1 − 2𝑧)]𝑊 = 0.                                               (12) 

 
In terms of 𝑍, equation (11) can be written as follows: 
 

൫𝐷෡ଶ − 1൯
ଷ

W + 𝑎ିସR ቂ1 − 𝑄 ቀ
ଶ௓

௔
− 1ቁቃ W = 0.                                                                                                     (13) 

 
Θ and 𝑓 are stated as follows: 
 

Θ =
ୟమ

ୖ
൫D෡ଶ − 1൯ ቀD෡ଶ − 1 −

୧ன

ୟమ୔౨
ቁ W,                                                                                                                 (14) 

 

𝑓 = −
௔஼ೝ

(஻బା௔మ)
ቀ𝐷෡ଶ − 3 −

௜ன

௉ೝ
ቁ 𝐷෡𝑊,                                                                                                                        (15) 

 
with ε = 𝑎ି଴.ହ dan 𝐷෡ = 𝑑/𝑑𝑧 = −𝐷/𝑎 (Hashim & Wilson, 1999). The boundary conditions at 𝑍 = 0 are 
as follows: 
 
𝑖ω𝑓 − 𝑊 = 0,                                                                                                                                                    (16) 
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൫𝐷෡ଶ + 1൯𝑊 + Γ𝑅[Θ − (𝑄)𝑓] = 0,                                                                                                                    (17) 
 
−𝑎𝐷෡Θ + 𝐵௜[Θ − (1 + 𝑄)𝑓] = 0,                                                                                                                      (18) 
 
While for the condition 𝑍 → ∞ obtained W →  0, 𝐷෡𝑊 → 0 dan Θ → 0. 
 
 
FINDINGS AND DISCUSSIONS 

Solving equation (12) and the boundaries conditions (13)−(18) by using MAPLE yields the solution for 
leading order for 𝑧 → ∞ as 
 
W଴(𝑍) = AZ𝑒ି௓                                                                                                                                                (19) 
 
where 𝐴 is an arbitrary constant. Figure 2 shows the fluid speed limit suit curve W଴(𝑍) in the limit 𝑎 → 10 
and 𝑎 → 100 which has been plotted from equation (19). It is found that the velocity of the fluid increases 
when crossing the depth 𝑑 and decreases sharply when very close to the surface of the fluid. This 
phenomenon is only a transient effect of fluid velocity seen in the main stage. Solving equations (14) and 
(15) gives 𝑓଴ = 0 and Θ଴ = 0. 

 
 

Figure 2: 𝑊଴(𝑧) respect to 𝑧 when 𝑎 → 10 dan 𝑎 → 100 

 
 
CONCLUSION AND RECOMMENDATIONS  

As a result of the analysis, we discovered that the internal heat source contributes to the rise in temperature 
of the fluid layer, causing the system to become unstable. We also discovered that gravity influences the 
phenomenon of oscillating motion. 
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