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__________________________________________________________________________________________ 

HIGHLIGHTS  

 Fingerprints have not to be exported outside the secure runtime environment.  
 If a TEE is compromised, it can attack more TAs and leak secrets such as fingerprint data or keys.    
 Isolating tasks avoids potential interference between different biometric operations. 
 Computation can be accelerated by using multiple threads.   
 Intel SGX is a hardware-assisted EE isolation technology to secure computation.  

__________________________________________________________________________________________ 

 

Abstract 

In this work, we present a new idea for improving biometric authentication of personal identities 
on mobile devices with significant accuracy and convenience because the problems that arise here are 
the vulnerability and confidentiality of biometric data before, during and after a biometric recognition 
operation, and the low processing speed during the same operation. The aim of this work is to propose 
a combination of the concepts of parallel computing and Trusted Execution Environments (TEE) as a 
solution to the problems raised. We thus address how parallel computing can be useful in 
accelerating the recognition of individuals, by reducing the interaction time with the database 
thus preventing some vulnerabilities. Finally, a hardware-assisted technology namely Intel SGX 
(Software Guard Extensions) is proposed for practical implementations. 

Keywords : parallel computing, trusted execution environment, biometric data, SGX. 

 

INTRODUCTION 

Today, biometric recognition represents a major step forward in guaranteeing the authenticity of 
personal identity. The retrieval, storage and use of biometric data are required by many hardware and 
software platforms in a variety of applications. However, these data are subject to security and 
confidentiality threats. What's more, the operations involved in processing them are becoming 
increasingly resource-intensive. 

Mobile devices are the main communication and entertainment device for many people, and frequently 
run trusted programs to handle sensitive and confidential data. Unfortunately, these mobile devices can 
also run a wide variety of potentially malicious programs. As such, they require isolation mechanisms 
that prevent untrusted programs from tampering with the code or data of trusted applications. 
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However, to provide a higher level of security as required by these applications, a number of proposals 
have been put forward, including the Trusted Execution Environment (TEE). In this article, we examine 
how TEE fits into the overall picture of services on a smartphone. We also analyze the current state of 
the art of the TEE proposition and the potential obstacles it may face due to the nature of current trends. 
Finally, we provide a potential pathway to overcome these issues in order to achieve large-scale 
deployment, enabling secure services to individual users. 

Biometric authentication on mobile platforms 

Some general information 

To unlock their mobile devices more easily, users now prefer biometric authentication, such as 
fingerprint sensors, which also reduce the cognitive load associated with memorizing several long 
passwords. 

Appropriate use of biometrics also increases security. Passwords are easy to steal; forging biometrics is 
much more difficult. The technology is ideal for providing role-based access controls and a high level 
of trust for business users. 

 

How do biometrics work on mobile platforms? 

Unlike passwords or PINs, biometric data is not stored on the network or transmitted between devices 
and servers. Instead, biometrics protect other authentication information (usually a digital certificate or 
private key), and it is this protected information that is actually used to verify the user. 

The first step in understanding and implementing biometrics is to have a standardized service that can 
run on various mobile platform applications, such as a secure runtime environment (TEE1). In the 
Android v6.0 compatibility definition, for example, there are two notable requirements for the 
integration of this hardware-based measure: 

- Smartphone vendors must use a TEE to match fingerprints. 

- Fingerprints must be encrypted, signed and stored in such a way that they cannot be exported 
(or read) outside the TEE. 

On platforms such as the Samsung Pass SDK, encryption stores data in the TEE and never leaves the 
device. A public/private key pair is "locked" with biometric data, and the fingerprint is used to unlock 
the keys implemented by the smartphone and Samsung Pass, to authenticate to and access the remote 
application. 

TEE: Trusted execution environment 
 

What is it? 

 
In the field of data security and confidentiality, Trusted Execution Environments (TEEs) are emerging 
as a bastion of protection within IT environments. A TEE is a secure enclave where code and data can 
be executed with the highest degree of confidence, safe from outside interference and malicious attack 

 
1 In this article, by TEE we mean software running in the secure world of ARM TrustZone, with the 
exception of trusted applications (TAs). TEE provides an execution environment for TAs.  
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(Sabt et al., 2015). It forms a hardware fortress that protects sensitive operations, cryptographic keys 
and authentication processes from unauthorized access and compromise. TEEs enable applications to 
operate in a confidential environment, even in the presence of untrusted or compromised components, 
underpinning secure operations in areas such as mobile devices, cloud computing and Internet of Things 
(IoT) ecosystems. This trusted enclave is the cornerstone for securing critical data and computational 
integrity in an increasingly interconnected, data-centric world. 

 Interest 

Trusted Execution Environments (TEEs) have a number of advantages, including : 

● Secure isolation: TEEs provide a secure enclave in which code can be safely executed. This 
enclave is isolated from the rest of the operating system and applications, reducing the risk of 
malicious interference. 

● Key and data protection: encryption keys, biometric data and processing operations are stored 
and executed within the TEE's secure environment. This reduces the risk of exposure of 
sensitive keys and data. 

● Authenticity and integrity: TEEs are designed to guarantee the authenticity and integrity of 
the code executed inside the enclave. This ensures that the code has not been modified or altered, 
which is crucial for the security of biometric operations. 

● Protection against physical and logical attacks: TEEs offer protection against a range of 
attacks, including auxiliary channel attacks, reverse engineering attacks and brute force attacks. 
Even if an attacker manages to compromise the operating system, the integrity of the TEE 
generally remains intact. 

● ID and session management: TEEs can be used to manage user IDs and biometric sessions 
securely, ensuring that authentication information is protected against interception or 
manipulation. 

● Extended security functions: some TEEs offer extended security functions, such as secure key 
generation, secure encryption/decryption operations and secure time-stamping functions. 

 

TEE deployment on mobile devices 

Trusted execution environments (TEEs) are widely deployed, particularly on smartphones. A recent 
trend in TEE development is the transition from vendor-controlled, single-use TEEs to open TEEs that 
host trusted applications (TAs) from multiple sources with independent tasks. This transition should 
create the TA ecosystem needed to provide enhanced, customized security for the applications and 
operating system running in the rich runtime environment (REE). However, the transition also poses 
two security problems: an enlarged attack surface resulting from the increased complexity of TA and 
TEE; and the lack of trust (or isolation) between TA and TEE. 

TEE (Trusted Execution Environment) is becoming increasingly popular, especially on mobile devices. 
Since its inception, TEE development has gone through the following stages. 

In the first stage, TEE is mainly used for a secure boot that checks the validity of the operating system 
loaded in the rich runtime environment (REE), for example, in Motorola X/G/E cell phones.  

In the second stage, TEE begins to support more features, including encryption, fingerprint 
authentication, mobile payment, Trusted User Interface (TUI), Digital Rights Management (DRM) and 
more. Some manufacturers are also exploiting TEE's high privilege to provide runtime protection for 
REE, for example, TrustZone Integrity Measurement Architecture (TIMA) in Samsung's KNOX 
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(Samsung Inc., 2018). Up to this point, the functionality of a TEE is generally fixed (i.e. it cannot change 
after manufacture). For example, if a third-party company needs to deploy a trusted application (TA) 
for mobile payment in TEE, it must pre-install the TA before the devices leave the factories. Today, the 
third stage of TEE development is underway. The new TEEs now support dynamic (post-manufacturing) 
installation of TAs. There are already a few TA app stores from which phone users can easily download 
and install TAs, just like installing an ordinary app, for example Samsung's trustlets (Samsung Inc., 
2018) and TrustKernel's TEEReady (TrustKernel, 2018). GlobalPlatform (GlobalPlatform, 2018) has 
proposed a set of APIs for communication between TEEs and REEs, which most commercial TEEs now 
follow as a de facto standard. ARM is also leading a group of TEE vendors to create the Open Trust 
Protocol (OTrP) (ARM, 2016), which combines a secure architecture with TA management. The aim of 
these efforts is to improve the compatibility and deployability of TAs with different TEEs. However, 
this increasing openness and flexibility makes TEE more complex and widens the attack surface. To 
support various TAs, TEEs are being developed with more features, leading to a significant increase in 
the size of the Trusted Computing Base (TCB). Meanwhile, as TEEs have to support the dynamic 
installation of new TAs, it is no longer possible for manufacturers to carry out comprehensive security 
tests at the factory. At present, there are more than ten TEE suppliers on the market. TEE's larger TCB 
and more dynamic TEE ecosystem pose two challenges: weakening security and increasing distrust. 
Firstly, TEE generally has the highest privilege in the system, so if TEE is compromised, the security of 
the whole system can be compromised. For example, an attacker can take advantage of a TEE bug to 
write arbitrary REE memory, known as the Boomerang attack (CVE-2016-8764). Meanwhile, if a TEE 
is compromised, it can attack more TAs and leak secrets such as fingerprint data (CVE-2015-4422) or 
keys (CVE-2015-6639). It is expected that the number of TEE vulnerabilities will continue to increase 
in the near future due to the expanded attack surface. Secondly, since there is currently only one TEE in 
each device, all TAs must trust the TEE unconditionally. However, this trust is becoming increasingly 
difficult to establish as more and more TAs from different sources enter the TEE. TA suppliers may 
demand a higher security standard or more security features than those provided by some TEEs. It is 
also possible that a TA supplier has a conflict of interest with a TEE supplier and prefers to trust/execute 
in another TEE. 

 

Table 1: Real-world mobile commercial TEE suppliers and products 

 Sales TEE name Architecture used 

Flea marketer Qualcomm QSEE ARM32, ARM64 

Spectrum Spectrum TEE ARM32 

HiSilicon TrustedCore ARM32 

TEE seller Apple Enclave ARM32 

TrustKernel T6 ARM32 

Trustonic Kinibi ARM32 

Google Trustee ARM32 

Linaro OP-TEE ARM32 

SierraWare Sierra TEE ARM32 

Proven&Run ProvenCore N.A. 
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TEE vulnerabilities 
  

Many vulnerabilities are critical for a large number of devices. An article from Google's Project Zero 
(Google Project Zero, 2017) shows how to exploit two major TEEs on real mobile devices. It concludes 
that "... despite their highly sensitive point of view, these operating systems currently lag behind modern 
operating systems in terms of mitigation and security practices." Many CVEs are not well documented 
and are slow to be published. For example, CVE-2016-10238 was first discovered in 2016 but only 
published in March 2017, and the description is brief: "... Technical details are unknown and an exploit 
is not publicly available." Yet we try to analyze each vulnerability with the best effort. We find that 
there are three basic categories of TEE-related vulnerabilities: first, TEE vulnerabilities can lead to 
leakage of secret data or execution of arbitrary code, e.g., CVE-2017-0518/0519, CVE-2016-2431/2432, 
etc. Secondly, TEE vulnerabilities allow one TA to affect the security of other TAs, for example, CVE-
2016-0825 and CVE-2015-6639/6647. Thirdly, TEE vulnerabilities can be exploited to obtain an 
elevation of privileges in the REE, for example, CVE-2016-8762/8763/8764. The causes of these attacks 
include the lack of isolation and the semantic gap between different execution environments. One of the 
main reasons behind the above vulnerabilities is that there are many interactions between applications 
running in REE and TEE, which usually take place via shared memory. As stated by Machiry et al 
(Machiry et al., 2017): "TEE has very limited visibility into the security mechanisms of the unapproved 
environment", which is referred to as the "semantic gap" between TEE and REE. Thus, a malicious CA 
(client application running in REE) can ask the TEE to overwrite data in the REE kernel. Although the 
CA itself cannot do this because it has no privilege, the TEE has a higher privilege and can violate the 
REE's security mechanism through logical errors. 

 

Need for several isolated TEEs 
 

Currently, all TAs installed on a device must trust the only TEE kernel available on that device. This 
forced trust is increasingly called into question as the TA ecosystem becomes more diverse and open. 
Let's take the example of a mobile payment TA running in a TEE offered by the phone manufacturer. If 
an attacker exploits a TEE bug to steal the TA payment's private key, he can in fact steal the user's 
money directly. In practice, the payment company ends up compensating the user for the TEE fault, like 
AliPay (Alipay Member Protection, 2018). The point here is that currently, a TA must trust the only 
TEE available on a device, even though the TEE may not meet the TA's security requirements or is not 
trustworthy to the TA. On the other hand, if the system supports multiple TEEs, the phone manufacturer 
may offer a default TEE (system TEE in this article) to run the manufacturer's TAs. At the same time, 
TAs with different security requirements can install TEE instances they trust. Protecting the TEE from 
attack by hardening the TEE itself could be a research direction for the security problem we are 
addressing. However, there are various TEE OS products from different vendors widely deployed in 
billions of devices, each with divergent design and implementation. It is difficult to protect them one by 
one in practice. 
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Biometric data protection during read/write operations 
 

Isolating biometric tasks is of crucial importance to guarantee the security, confidentiality and integrity 
of biometric data, as well as to avoid potential interference between different biometric operations. As 
shown by Ayaz Akram (Akram, 2021), Trusted Execution Environments (TEEs) are ideally suited to 
this task. 

We propose the use of TEE in a parallel processing environment to isolate biometric tasks and protect 
them from each other. 

In a parallel processing environment, several biometric tasks may be running simultaneously on different 
cores or processors. TEE will enable each biometric task to be isolated in its own secure space. So, even 
if one task is compromised, the other tasks remain protected and secure. 

Furthermore, thanks to this process, biometric data is not exposed to unauthorized processes, minimizing 
the risk of leakage or unauthorized access. 

When it comes to encrypting biometric data, TEEs will provide a secure environment for the use of 
keys, preventing their exposure to unauthorized parties. 

Similarly, TEEs are designed to resist both physical and lateral attacks. This means they are less 
susceptible to attacks based on power consumption measurement, timing analysis or other methods used 
to compromise system security. 

Parallel calculation 
 
Definition 

 

In contrast to sequential computing, parallel computing involves the simultaneous execution of a single 
task, partitioned and adapted so that it can be distributed between several processors to process larger 
problems more quickly:  

𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙_𝑡𝑖𝑚𝑒 →  𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙_𝑡𝑖𝑚𝑒 = 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙_𝑡𝑖𝑚𝑒/𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 

 

Interest 

Parallel computing has a wide range of applications, as specified in (Abdellatif, 2016) and (Wang et al., 
2018). Among the many advantages it offers, we would highlight the following: 

● performance enhancement 
● better use of resources 
● a trade-off between performance and price 
● edge computing 
● resource sharing 
● scalability 
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Some examples of works using parallel computing to enhance biometric authentication 
 

In (Mangata et al., 2022), Mangata et al. evaluated the runtime performance of a single-mode biometric 
recognition system for fingerprint-based access control to secure premises. To accelerate computation 
time in this system, they resorted to parallel programming, targeting more loops in the verification 
module. Their approach was to parallelize all computationally-intensive loops when verifying 
fingerprints in the database by leveraging Microsoft's parallel task library, specifically exploiting the for 
and for each loops. 

Supatmi et al. in (Supatmi et al., 2020), studied fingerprint matching using the Bozorth3 algorithm to 
match fingerprints and parallel computing using NVIDIA Compute Unified Device Architecture 
(NVIDIA CUDA). In this study, fingerprint matching is performed with parallel computing applied to 
the Graphics Processing Unit (GPU). The GPU device used in this study is the CUDA (Compute Unified 
Device Architecture), which is an application programming interface (API) developed by NVIDIA. 
Their results show that the CUDA runtime process is better than the CPU runtime process. 

 

Our technology proposal  
Intel SGX (Intel Software Guard Extensions (SGX)) (McKeen et al., 2013) is a processor instruction set 
extension that enables the creation of a 32-bit trusted execution environment (TEE), a secure enclave. 

By incorporating reliable runtime technologies such as the widely available Intel Software Guard (SGX) 
extensions into mobile devices, applications can be made secure. However, software engineers need to 
align the development process with the capabilities and properties of such technology, in order to 
properly secure applications while achieving good performance. 

 

METHODOLOGY 
 
Performance Overhead of Native SGX 
 
Switching Delay 
 
The switching delay comes from the switching from normal execution environment to trusted execution 
environment, or vice versa. Many operations can introduce the switching delay, e.g, an ECALL or 
OCALL, or even a system call. An ECALL or OCALL will obviously slow down the execution because 
of switching between trusted environment and untrusted environment. As for a system call, it cannot be 
executed inside a SGX environment directly, and needs to be executed outside. Therefore, a system call 
is comprised in an OCALL for native SGX applications. Same as an OCALL, switching to the normal 
execution environment to perform a system call will inevitably introduce a delay. Switching delay is the 
major source of overhead for some I/O intensive applications, to reduce the overhead, developers need 
to invoke ECALLs, OCALLs wisely. 
 
Analysis of Switching Delay 
The switching delay of the Intel SGX happens every time when a SGX program tries to cross the 
boundary between trusted and untrusted environment, i.e., whenever an ECALL or OCALL happens. In 
this section, we will have discussion on how it can affect the performance of SGX applications and 
evaluate it. 
 
To evaluate the switching delay, we use two groups of functions. In general, functions in group 1 do not 
have switching delay and functions in group 2 contain switching delay. For group 1 which listed in 
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Listing 3.1, it contains three functions which execute in the normal execution environment. They can be 
executed in the normal environment directly, which means invoking them does not require switching 
the environment, and therefore will not introduce any switching delay. For group 2 which listed in 
Listing 3.2 and Listing 3.3, it contains one OCALL and four ECALLs. To execute these functions, we 
must start from untrusted part of the application and then switch to the SGX environment, therefore the 
switching delay will be introduced. And an nested ecall_ocall function will even experience such delay 
twice. 
We write some simple and representative functions for normal and SGX environment. The functions 
normal_empty and ecall_empty are the simplest functions that can reflect the influence of the switching 
delay; the function ecall_ocall is simplest ECALL-OCALL pair; the functions normal and ecall_print 
can be used to show how print statements can slowdown the execution; and the functions normal_malloc 
and ecall_malloc can be used to show whether a simple memory allocation can affect the performance. 
 

 

 

 

 

 

 

 

 

 

 

 

 
 
Evaluation 
 
All experiments use Intel NUC7i5BNH with an i5-7260U processor with 4 cores at 2.20 GHz with 4 
MB cache and 12 GB main memory. 
 
For each experiment, we execute each function for one million times, and 50 runs for each experiment 
are reported so that we can calculate the average. Figure 2 shows the results. From the figure, we can 
see that the switching delay is absolutely significant, e.g., an empty ECALL ecall_empty is more than 
2500x times slower than the normal_empty function in the normal environment. The ecall_ocall function 
takes approximately double time of  ecall_empty and this is consistent with the fact that an ECALL 
which contains an OCALL would experience the switching delay twice. 
 
For the performance of normal_print and ecall_print functions, we can see printing statements will 
heavily affected the execution performance. In the normal environment, because invoking a printf 
function involves system calls which can take a relatively longer time, the performance is affected. And 
in the SGX environment, a print statement will introduce an ECALL delay and an OCALL switching 
delay plus preparing time for the string, as well as the real printing time in the normal environment. In 
general, using a print statement in the SGX environment is more than 250x times slower than using a 
printf directly in the outside. 
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As for the ecall_malloc, its execution time is only slightly higher than the simplest ECALL ecall_empty. 
This means the switching delay is the major source of performance overhead compared to libc functions 
in the enclave and system calls outside. 
In general, the surprisingly high performance overhead introduced by the switching delay of Intel SGX 
needs to be paid attention with. Developers must build the SGX applications wisely and try not to abuse 
the ECALL, OCALL or any other functions that will introduce the significant switching delay. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
Figure 2: Performance of normal and SGX functions 

 

DISCUSSION 
 
Practically it is observed from (Ngoc et al., 2019) that "SGX imposes a heavy performance penalty upon 
switching between the application and the enclave, ranging from 10,000 to 18,000 cycles per call 
depending on the call mechanism used". It is well known that energy saving is the ultimate aim of any 
mobile device as they are battery operated. If such heavy mechanism is employed then battery of mobile 
may drain fast. 
 

Optimization 
 
Tian et al. in (Tian et al., 2018) pointed out that SGX will cause CPU performance loss. The reason is 
the frequent enclave switch. SGX provides standard functions OCall and ECall for users to get in and 
out of the enclave. They performed more than 8000 CPU cycles. So researchers used “Switchless Calls” 
to improve SGX performance by minimizing the number of OCall and ECall calls. They present another 
shared memory based switchless enclave function call schema for Intel SGX. The schema has been 
included in recent versions of the Intel SGX SDK as an official feature. They argue that it is not always 
worth dedicating an entire logical core to an enclave worker thread in exchange for faster enclave 
transitions. The novelty of this implementation is that it makes it possible to decide at runtime whether 
to use switchless enclave function calls or normal ECalls. This technique aims to utilize the available 
CPU resources more efficiently. The general idea is that at points in time when the frequency of enclave 
function calls is low, then an ECall is affordable. However, switchless enclave function calls should be 
used at points in time where enclave functions are called in high frequency. 
 
In effect, a recent patch in Linux SGX SDK contains switchless calls, which reduces an enclave mode 
switch overhead during the enclave transition. The goal of switchless calls is to eliminate enclave 
switches from SGX applications by making ECALL and OCALL themselves switchless, which are 
functions used for entering/leaving SGX enclaves. For this, an SGX run-time library executes two 
worker threads, one in the application (untrusted) memory region and the other in the enclave (trusted) 
memory region. The application worker thread handles ECALL, while the enclave worker thread 
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handles OCALL, respectively. There are two thread pools to handle switchless ECALL and OCALL, 
and worker threads are executed asynchronously. For asynchronous execution, switchless calls utilize 
two shared queues: a request queue and a response queue. 
Figure 1 illustrates the workflow of a switchless OCALL. The implementation of switchless calls adopts 
a sleep-wake approach for efficiency. When a caller thread inside an enclave invokes an OCALL, it first 
updates the request queue. Then, one of the worker threads from the thread pool in the untrusted region 
is assigned and handles the OCALL. 
Finally, the worker thread updates the response queue. Note that the current version of Linux SDK 
reflects switchless SGX implementation for common operations inside an enclave, such as threading, 
file I/O, and system clock, to eliminate OCALLs. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 : Workflow of OCALL 

 

CONCLUSION 

The issue of security and confidentiality of biometric information is one that our solution addresses. 
Firstly, the trusted execution environment approach is used to guarantee the confidentiality of said data 
during processing. Finally, we reinforce the implementation of these different operations by the principle 
of parallel computing. SGX is a credible enforcement technology that is not too trendy, but the research 
of it is still on the road. As one of the new solutions to cloud security issues, SGX provides a new 
perspective and strategy for rethinking our approach to cloud security. However, the experimental 
results of the performance analysis of SGX have shown that the overhead of SGX runtime is enough to 
affect the performance of cloud applications. Given the considerable performance costs and the 
complexity of breaking down the application structure into multiple parts, SGX seems ill-suited for 
today’s cloud environments. To summarize, one of SGX’s open challenges for large-scale, complex 
cloud applications is how to map an application to enclaves to provide the best balance of TCB size, 
performance, and data security. Future work can focus on finding an effective solution to the challenges 
posed by SGX performance issues in the cloud. 
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