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 In Markov chain theory, performance parameters are indicator of the 

proper management of a queue. In this field, an abundant literature 

exists, particularly in the steady state, which is not the case in the 

transient state. It is in this context that we can question whether it is 

possible to establish the equations of the performance measures in the 

transient regime with absolute priority given the complexity of the study 

of Markov chains in a transient regime. To achieve this, we used the 

analytical method based on the exploitation of the Laplace transform in 

the Kolmogorov equations, as well as the theory of convergent series in 

the equations resulting from the transition matrices. This analysis is 

supported by the descriptive technique. These tools allowed us to 

produce concrete results; which are the performance measures of 

priority and no priority customers in a transient regime M/M/1 queue. 

Which is a plus in the field of Markov chains. The purpose of this paper 

is to analyse the M/M/1 transient performance measures with absolute 

priority. Its originality lies in the fact that we have determined the 

expressions of the performance measures of non-priority customers in a 

transient regime. Indeed, very few publications are made in this area at 

this time. A numerical application was treated to illustrate the theory 

evoked above. This reflection could soon be carried out in a fuzzy 

environment.  
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1. INTRODUCTION 

The concept of rational queuing is relevant management is essential today in several areas, among then we 

can cite: public transportation, service at a counter, reception in a medical office, etc. In all these cases, 

managers and clients need efficient services, because waiting for long has a cost. Thus, to size a service 
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center, as Agnès (2012) points out, a necessary condition is that it is capable of absorbing the average arrival 

and service flow rates of all categories of clients. 

Initiated since the beginning of the 20th century, with the work of the Danish engineer AK Erlang on 

the management of Copenhague’s   telephone networks, the queuing phenomena were only generalized and 

developed in other areas after the Second World War with the remarkable contributions of Palm, Chapman, 

Kolmogorov, Pollaczek. Currently, much work has been carried out on the study of performance parameters 

with or without priority in steady state, among others (Deepak et al., 2022; Baudouin Adia et al., 2022; Y 

cart B, 2014), but very rare in transient regime where we can cite Alonge w’Omatete (2021). In this existing 

literature, nothing has been done on the performance parameters with absolute priority in the transient state 

of the waiting system. 

The main question we want to address is whether it is possible to create the performance parameters 

of the M/M/1 model with absolute priority in transient conditions. The question being worrying, we believe 

that there would be scientific methods based in particular on state probabilities, Kolmogorov equations, 

Laplace transforms, transition matrices, convergent series. which would facilitate the evaluation of 

measurements performance of the M/M/1 queuing system with absolute priority in transient conditions. 

Particular emphasis is placed on non-priority customers. 

Given that this thought is limited to the calculation of performance parameters in priority transient 

regime, our approach is structured in two sections: the first relates to generalities on state probabilities, 

Kolmogorov equations, Laplace transforms and transition matrix. The second, analyze the system 

performance measurements and the numerical example. 

In this thought, we have carried out a mathematical analysis of the performance parameters which are 

the indicators of the good management of a queue. The case under examination is the determination of 

performance measures in transient state, with absolute priority. The discipline retained is FIFO, with the 

consequence that the service of a non-priority customer can only completely result in the absence of a 

priority customer in the system. The method used is based on the Laplace transform applied to the 

Kolmogorov equations, state probabilities and transition matrices. 

1.1 State probability  

Consider a stochastic process with time space T and state space  𝐸 = {𝑋(Ω), 𝑡 ∈ 𝑇}. According to 

(Mabela et al., 2021), the conditional probability for the system to be in the state 𝑒𝑘at time  𝑡𝑘, knowing 

that it was in the state 𝑒𝑗at time 𝑡𝑗and in the state 𝑒𝑖at time 𝑡𝑖is written: 

𝑝𝑒𝑖𝑒𝑗𝑒𝑘
(𝑡𝑖, 𝑡𝑗 , 𝑡𝑘) = ℙ[ 𝑋(𝑡𝑘) = 𝑒𝑘 ∣∣ 𝑋(𝑡𝑗) = 𝑒𝑗 , 𝑋(𝑡𝑖) = 𝑒𝑖 ]                                                                    (1) 

With 𝑒𝑖 , 𝑒𝑗 , 𝑒𝑘 ∈ 𝐸, or simply, 

𝑝𝑖,𝑗,𝑘(𝑡𝑖 , 𝑡𝑗, 𝑡𝑘) = ℙ[ 𝑋(𝑡𝑘) = 𝑘 ∣∣ 𝑋(𝑡𝑗) = 𝑗, 𝑋(𝑡𝑖) = 𝑖 ]   

Let us note by, 

  𝑃(𝑡) = (𝑝𝑖,𝑗(𝑡))  𝑜ù  𝑝𝑖,𝑗(𝑡) = ℙ([ 𝑋𝑡′+𝑡 = 𝑗 ∣∣ 𝑋𝑡′ = 𝑖 ]) , 

 So, 
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𝑃(𝑡) = 𝑒𝐿𝑡 = ∑
𝑡𝑘

𝑘!
𝐿𝑘+∞

𝑘=0                                                                                                                              (2) 

1.2 Kolmogorov equations 

Or �⃗� (𝑡) = �⃗� (0)𝑃(𝑡), its derivative (Dassa Meriyam, 2019) : 

𝜋′⃗⃗  ⃗(𝑡) = �⃗� (0)𝑃′(𝑡)= �⃗� (𝑡)𝐿 

Where 𝐿 is the infinitesimal generator of the stochastic process defined by, 

   𝐿(𝑖, 𝑗) = {

𝑝𝑖,𝑖 = −𝜆

𝑝𝑖,𝑖+1 = 𝜆

𝑝𝑖,𝑗    = 0
                                                                                                                                   (3) 

The life and death processes can be used to model the evolution of a population over time, the number 

of customers in a queue, in the system, etc. They are continuous Markov processes ( 𝑇 = ℝ+)with values 

in 𝐸 = ℕsuch that the only possible non-negligible transitions from 𝑁are to 𝑁 + 1  𝑜𝑢 𝑁 − 1. 

We will ask 𝑎𝑖,𝑖+1 = 𝜆𝑖   𝑒𝑡  𝑎𝑖,𝑖−1 = 𝜇𝑖where 𝑖 ≥ 1  𝑒𝑡  𝑎0,0 = 𝜆0represents 𝜆𝑖the birth rate from the 

state 𝑖and 𝜇𝑖the death rate from the state 𝑖. 

The following system is called “Kolmogorov equations”, 

{
𝑝′

0
(𝑡) = −𝜆𝑝0(𝑡) + 𝜇1𝑝1(𝑡)                                                   

𝑝′
𝑛
(𝑡) = 𝜆𝑛−1𝑝𝑛−1(𝑡) − (𝜆𝑛 + 𝜇𝑛)𝑝𝑛(𝑡) + 𝜇𝑛+1𝑝𝑛+1(𝑡)

                                                                         (4) 

1.3 Laplace transforms 

We define a causal function as any function defined on ℝ, zero on ] − ∞, 0[and continuous piecewise 

on [0, +∞[ (Alonge w’Omatete, 2021). If 𝑓is a causal function, the Laplace transform of 𝑓is defined by 

(Norbert Verdier et al., 2022): 

𝐹(𝑝) = ℒ(𝑓)(𝑝) = ∫ 𝑒−𝑝𝑡𝑓(𝑡)𝑑𝑡
+∞

0
= lim

𝑥→+∞
∫ 𝑒−𝑝𝑡𝑓(𝑡)𝑑𝑡,

𝑥

0
                                                                     (5) 

for the values of 𝑝for which this integral converges. 

1.4 Properties 

- The Laplace transform is linear: 

ℒ(𝑎𝑓 + 𝑏𝑔) = 𝑎ℒ(𝑓) + 𝑏ℒ(𝑔).                                                                                                                   (6) 

- Effect of a translation: 

either 𝑎 > 0 and 𝑔(𝑡) = 𝑓(𝑡 − 𝑎)   𝑎𝑙𝑜𝑟𝑠  ℒ(𝑔)(𝑝) =  𝑒−𝑎𝑝ℒ(𝑓)(𝑝).                                                      (7) 

- Effect of multiplication by an exponential: 



134 Lama Okenge & Mabela Makengo Matendo / Journal of Computing Research and Innovation (2024) Vol. 9, No. 1 

https://doi.org/10.24191/jcrinn.v9i1

 

 ©Authors, 2023 

If 𝑔(𝑡) = 𝑒𝑎𝑡𝑓(𝑡),   𝑎𝑣𝑒𝑐 𝑎 ∈ ℝ  𝑎𝑙𝑜𝑟𝑠    ℒ(𝑔)(𝑝) = ℒ(𝑓)(𝑝 − 𝑎).                                                           (8) 

- Derivation. 

Let be 𝑓a causal function differentiable on ]0, +∞[. So, for everything 𝑝for which both members have 

meaning, 

ℒ(𝑓′)(𝑝) = 𝑝ℒ(𝑓)(𝑝) − 𝑓(0+).                                                                                                                    (9) 

- The reciprocal of the Laplace transform 

If 𝐹(𝑝) =  ℒ(𝑓(𝑡))     𝑠𝑜  𝑓(𝑡) = ℒ−1(𝐹(𝑝))                                                                                             (10) 

Consequences 

𝑖𝑓 𝑓(𝑡) = 1   𝑠𝑜  𝐹(𝑝) =
1

𝑝
.                                                                                                                          (11) 

𝑖𝑓 𝑓(𝑡) = sin(𝑎𝑡)  𝑠𝑜   𝐹(𝑝) =
𝑎

𝑝2+𝑎2.                                                                                                        (12) 

𝑓𝑜𝑟 𝑓𝑡) = cos(𝑎𝑡) 𝑤𝑒 ℎ𝑎𝑣𝑒    𝐹(𝑝) =
𝑝

𝑝2+𝑎2.                                                                                          (13) 

𝑓𝑜𝑟 𝑓(𝑡) = 𝑒−𝛼𝑡   𝑤𝑒 ℎ𝑎𝑣𝑒    𝐹(𝑝) =
1

𝑝+𝛼
.                                                                                                  (14) 

𝑠𝑖 𝑓(𝑡) = 𝑡𝑛     𝑠𝑜     𝐹(𝑝) =
𝑛!

𝑝𝑛+1.                                                                                                               (15) 

 

Definition. A Markovian queue system is in a transient state, when the performance parameters are a 

function of time. 

1.5 Transition matrix and graph of a CMTD 

The advantage of this approach is that we are interested in the state of the system only at particular 

moments 𝑡𝑛in the evolution of the process, by means of state and transition probabilities.  

Let us denote by 𝑃, the one-step matrix 𝑃(1)and by𝑃𝑥,𝑦 = 𝑃𝑥,𝑦
(1)

.  

For everything 𝑡, 𝑡′ ∈ ℕ, we have: 

 𝑃(𝑡 + 𝑡′) = 𝑃(𝑡). 𝑃(𝑡′) 

Especially, 

  𝑃(𝑛+1) = 𝑃(𝑛). 𝑃(1) = 𝑃(𝑛)𝑃  𝑎𝑛𝑑   𝑃(𝑛) = 𝑃𝑛 . 

The one-step transition probabilities are given by: 

𝑝𝑖,𝑗 = ℙ[𝑋𝑡 = 𝑗 ∣∣ 𝑋𝑡−1 = 𝑖 ] ∀𝑖, 𝑗 ∈ 𝐸  𝑠𝑢𝑐ℎ 𝑎𝑠 ∑ 𝑝𝑖,𝑗 = 1𝑗∈𝐸 .                                                                 (16) 

The transition probabilities with 𝑛steps (steps) denoted by 𝑃𝑖,𝑗
(𝑛)

are given by: 
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𝑝𝑖,𝑗
(𝑛)

= ℙ[𝑋𝑡+𝑡′ = 𝑗 ∣∣ 𝑋𝑡 = 𝑖 ].                                                                                                                       (17) 

The transition matrix 𝑃characterizing the chain is often useful for creating a graph of the chain, where 

the states are represented by points and the transition probability 𝑃𝑥,𝑦 > 0by an arc oriented above which 

the value of is noted 𝑝𝑥,𝑦. 

2. RESULTS 

2.1 Performance parameters of priority clients in system M/M/1 transient state 

Note that this category of customers is served as in a standard queue (Baudouin Adia et al., 2022). 

Starting from the state probabilities described by the Kolmogorov equations, according to (Mabela, 

M., 2023) and (Ritha. W and Rajeswari, 2021). 

For 𝜆𝑛 = 𝜆 > 0, 𝜇𝑛 = 𝜇 > 0 , system (4) is written: 

{
𝑝′

𝑥
(𝑡) = 𝜆𝑝𝑥−1(𝑡) − (𝜆 + 𝜇)𝑝𝑥(𝑡) + 𝜇𝑝𝑥+1(𝑡) ;    𝑥 ≥ 1

𝑝′
0
(𝑡) = −𝜆𝑝0(𝑡) + 𝜇𝑝1(𝑡)                                                   

                                                                                  (18) 

The Laplace transforms (5) and (9) applied to 𝑝′
𝑥
(𝑡) 𝑎𝑛𝑑 𝑝𝑥(𝑡)are written: 

{
ℒ (𝑝′

𝑥
(𝑡)) = 𝑠𝑝𝑥

∗(𝑠) − 𝑝𝑥(0)

ℒ(𝑝𝑥(𝑡)) = 𝑝𝑠
∗(𝑠)                     

                                                                                                                       (19) 

Substituting (19) into (18) we obtain: 

{
𝑠𝑝𝑥

∗(𝑠) − 𝑝𝑥(𝑠) = 𝜆𝑝𝑥−1
∗ (𝑠) − (𝜆 + 𝜇)𝑝𝑥

∗(𝑠) + 𝜇𝑝𝑥+1
∗ (𝑠)

𝑠𝑝𝑥
∗(𝑠) − 𝑝0(0) = −𝜆𝑝0

∗(𝑠) + 𝜇𝑝1
∗(𝑠)                                   

                                                                            (20) 

Returning to initial conditions where 𝑝𝑥(0) = 0, 𝑖𝑓 𝑥 ≠ 0 𝑎𝑛𝑑 𝑝0(𝑥) = 1, 𝑖𝑓 𝑥 = 0, (20) becomes: 

{
𝑠𝑝𝑥

∗(𝑠) = 𝜆𝑝𝑥−1
∗ (𝑠) − (𝜆 + 𝜇)𝑝𝑥

∗(𝑠) + 𝜇𝑝𝑥+1
∗ (𝑠)                                                                                               (21)           

𝑠𝑝𝑥
∗(𝑠) − 1 = −𝜆𝑝0

∗(𝑠) + 𝜇𝑝1
∗(𝑠)                                                                                                                        (22)         

 

According to (Y cart B, 2014), the 𝑝𝑥
∗(𝑠)are solutions of equation (21). By setting 𝑘(𝑠) =

𝑝𝑥+𝑖
∗ (𝑠)

𝑝𝑥−(𝑖+1)
∗ (𝑠)

;    (𝑖 =

0,1), we obtain the characteristic equation associated with (21), 

𝜇𝑘2(𝑠) − (𝑠 + 𝜆 + 𝜇)𝑘(𝑠) + 𝜆 = 0                                                                                                                    (23) 

Whose roots are given by: 

𝛼(𝑠) =
1

2𝜇
[𝑠 + 𝜆 + 𝜇 + ((𝑠 + 𝜆 + 𝜇)2 − 4𝜇𝜆)

1

2]                                                                                          (24) 

𝛽(𝑠) =
1

2𝜇
[𝑠 + 𝜆 + 𝜇 − ((𝑠 + 𝜆 + 𝜇)2 − 4𝜇𝜆)

1

2]                                                                                        (25) 
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The solution to (21) is written according to (Ycart B., 2014): 

𝑝𝑥
∗(𝑠) = 𝐴(𝑠)(𝛼(𝑠))

𝑥
+ 𝐵(𝑠)(𝛽(𝑠))

𝑥
                                                                                                     (26) 

With   0 < 𝛽(𝑠) < 1 < 𝛼(𝑠)    𝑓𝑜𝑟  𝑠 > 0, 

The root 𝛼(𝑠)being rejected because (𝑠) ∉ [0,1], the linearity of the Laplace transforms leads to the 

following: 

∑ 𝑝𝑥
∗(𝑠)𝑛

𝑥=1 =
1

𝑠
, (𝑠 > 0)                                                                                                                            (27) 

The series ∑ 𝑝𝑥
∗(𝑠)𝑛

𝑥=1 being convergent implies that 

∑ [𝐵(𝑠)(𝛽(𝑠))
𝑥
]∞

𝑥=1 =
𝐵(𝑠)

1−𝛽(𝑠)
                                                                                                                     (28) 

The relations (27) and (28) give: 

1

𝑠
=

𝐵(𝑠)

1−𝛽(𝑠)
   ⟹         𝐵(𝑠) =

1

𝑠
(1 − 𝛽(𝑠))                                                                                                  (29) 

And (26) becomes: 

𝑝𝑥
∗(𝑠) =

1

𝑠
(1 − 𝛽(𝑠))(𝛽(𝑠))

𝑥
=

1

𝑠
((𝛽(𝑠))

𝑥
− (𝛽(𝑠))

𝑥+1
)                                                                     (30) 

By deriving the relation (25) we obtain: 

𝛽′(𝑠) =
1

2𝜇
(1 −

𝑠+𝜆+𝜇

((𝑠+𝜆+𝜇)2−4𝜇𝜆)
1
2

)                                                                                                               (31) 

The relations (25) and (31) at the point 𝑠 = 0give: 

𝛽(0) = {
1            𝑖𝑓 𝜆 ≥ 𝜇
𝜆

𝜇
          𝑖𝑓  𝜆 < 𝜇

                                                                                                                             (32) 

𝛽′(0) = {
−

1

𝜆−𝜇
       𝑖𝑓  𝜆 ≥ 𝜇

𝜆

𝜇
(

1

𝜆−𝜇
)    𝑖𝑓  𝜆 < 𝜇

                                                                                                                     (33) 

The case 𝜆 < 𝜇 interests us more compared to the other, because the opposite leads to explosion. 

Developments in entire series of (𝛽(𝑠))
𝑥
  𝑖𝑓  (𝛽(𝑠))

𝑥+1
 ; according to Mac-Laurin. By putting 𝑓(𝑥) =

(𝛽(𝑠))
𝑥
   𝑒𝑡   𝑔(𝑥) = (𝛽(𝑠))

𝑥+1
we obtain: 

𝑓(𝑥) = ∑ 𝑥! (
𝜆

𝜇
)

𝑥

(
1

𝜆−𝜇
)

𝑥 𝑠𝑛

𝑛!
= (

𝜆

𝜇
)

𝑥

(
𝜆−𝜇

(𝜆−𝜇)−𝑠
)  ;      |

𝜆

𝜆−𝜇
| < 1∞

𝑛=0                                                                  (34) 
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𝑔(𝑥) = ∑ (𝑥 + 1)! (
𝜆

𝜇
)

𝑥+1

(
1

𝜆−𝜇
)

𝑥+1 𝑠𝑛+1

(𝑛+1)!
= (

𝜆

𝜇
)

𝑥+1

(
𝜆−𝜇

(𝜆−𝜇)−𝑠
)  ;    |

𝑠

𝜆−𝜇
| < 1∞

𝑛=0                                      (35)                                                                                                                                                    

Substituting (34) and (35) into (30) we obtain: 

𝑝𝑥
∗(𝑠) =

1

𝑠
[(

𝜆

𝜇
)

𝑥

(
𝜇−𝜆

𝑠−(𝜆−𝜇)
) + (

𝜆

𝜇
)

𝑥+1

(
𝜇−𝜆

𝑠−(𝜆−𝜇)
)]                                                                                         (36) 

(8) allows us to write (with ci .𝑝𝑥(0) = 0, 𝑥 ≠ 0) : 

𝑝𝑥
′ (𝑡) =  ℒ−1(𝑠𝑝𝑥

∗(𝑠)) = ℒ−1 [(
𝜆

𝜇
)

𝑥

(
𝜇−𝜆

𝑠−(𝜆−𝜇)
) + (

𝜆

𝜇
)

𝑥+1

(
𝜇−𝜆

𝑠−(𝜆−𝜇)
)]                                                         (37) 

(6) and (14) applied to (37) gives the following: 

𝑝𝑥
′ (𝑡) = −(

𝜆

𝜇
)

𝑥
(𝜆 − 𝜇) 𝑒−(𝜇−𝜆)𝑡 + (

𝜆

𝜇
)

𝑥+1

(𝜆 − 𝜇)𝑒−(𝜆−𝜇)𝑡                                                                    (38) 

The integration of (38) in [0, 𝑡]gives: 

𝑝𝑥(𝑡) = (
𝜆

𝜇
)

𝑥

𝑒−(𝜇−𝜆)𝑡 − (
𝜆

𝜇
)

𝑥+1

𝑒−(𝜇−𝜆)𝑡 + 𝑐                                                                                           (39) 

 𝑝𝑥(0) = 0,   𝐶 = (
𝜆

𝜇
)

𝑥

(1 −
𝜆

𝜇
)                                                                                                                  (40) 

Hence the general solution is  

𝑝𝑥(𝑡) = (
𝜆

𝜇
)

𝑥

(1 −
𝜆

𝜇
) (1 − 𝑒−(𝜇−𝜆)𝑡)                                                                                                        (41) 

For 𝑥 = 0, 

𝑝0(𝑡) = ℙ[𝑥(𝑡) = 0] = (1 −
𝜆

𝜇
) (1 − 𝑒−(𝜇−𝜆)𝑡)                                                                                        (42) 

Knowing that 𝜌1 =
𝜆

𝜇
, and posing: 𝛼 = 𝜇 − 𝜆 ; (41) and (42) become: 

𝑝𝑥(𝑡) = 𝜌1
𝑥(1 − 𝜌1)(1 − 𝑒−𝛼𝑡)                                                                                                                (43) 

𝑝0(𝑡) = ℙ[𝑥(𝑡) = 0] = (1 − 𝜌1)(1 − 𝑒−𝛼𝑡)                                                                                            (44) 

Therefore, the performance parameters are such as: 

➢ Server utilization rate at a time 𝒕. 

𝔲(𝑡) = 1 − 𝑝0(𝑡) = 1 − (1 − 𝜌1)(1 − 𝑒−𝛼𝑡) = 𝜌1 + (1 − 𝜌1)𝑒
−𝛼𝑡.                                                        (45) 

➢ System throughput on a date  𝒕 : 
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𝑑(𝑡) = (1 − 𝑝0(𝑡))𝜇 = 𝜇(1 − (1 − 𝜌1)(1 − 𝑒−𝛼𝑡)) = 𝜆 + 𝛼𝑒−𝛼𝑡.                                                         (46) 

➢ Average number of customers in system at the moment 𝒕 : 

𝑁𝑠(𝑡) = ∑ 𝑥∞
𝑥=0 𝑝𝑥(𝑡) = ∑ 𝑥𝜌𝑥(1 − 𝜌1)(1 − 𝑒−𝛼𝑡)∞

𝑥=0 =
𝜌1(1−𝑒−𝛼𝑡)

1−𝜌1
,                                                        (47) 

➢ Average number of customers in queue on a date  𝒕: 

𝑁𝑓(𝑡) = ∑ (𝑥 − 1)∞
𝑥=0 𝑝𝑥(𝑡) = ∑ 𝑥∞

𝑥=0 𝑝𝑥(𝑡) − ∑ 𝑝𝑥(𝑡)
∞
𝑥=1 − 𝑝0(𝑡) =

𝜌1
2−(𝜌1

2−𝜌1+1)𝑒−𝛼𝑡

1−𝜌1
                       (48) 

➢ Average stay time of a customer in the system during a period𝒕  

�̅�𝑠(𝑡) =
𝑁𝑠(𝑡)

𝑑(𝑡)
=

𝜌1(1−𝑒−𝛼𝑡)

(1−𝜌1)(𝜆+𝛼𝑒−𝛼𝑡)
.                                                                                                                  (49) 

➢ Average time a customer waits in line for an instant  𝒕: 

�̅�𝑓(𝑡) =
𝑁𝑓(𝑡)

𝑑(𝑡)
=

𝜌1
2−(𝜌1

2−𝜌1+1)𝑒−𝛼𝑡

(1−𝜌1)(𝜆+𝛼𝑒−𝛼𝑡)
.                                                                                                            (50) 

2.2 Non-Priority Customers Performance Settings 

Note that for this category of customers, the task is not so easy because their services are strongly 

disrupted by the arrivals and services of priority customers in the system. Service to a non-priority customer 

can only result in the total absence of a priority customer in the system (Babu et al., 2020; Yin et al., 2023). 

Let 𝑋(𝑡) 𝑒𝑡 𝑌(𝑡), be the numbers of respectively priority and non-priority customers at the moment 

𝒕. As (𝑋(𝑡), 𝑌(𝑡))it is a discrete state, the continuous-time Markov chain and its techniques will allow us 

to describe the limit distribution, when it exists, from a diagram. 

Consider 𝜆1(𝜃) 𝑒𝑡 𝜆2(𝜃), the arrival rates of priority and non-priority customers respectively in the 

system during the period [0, 𝜃]and by 𝛾(𝜃) 𝑒𝑡 𝛿(𝜃), the rates of priority and non-priority customers 

respectively served during the period [0, 𝜃]. 

- The arrival rate in the system is the sum 𝜆 = 𝜆1 + 𝜆2 ; 

- Or 𝑝 =
𝜆1

𝜆
  𝑒𝑡 𝑞 =

𝜆2

𝜆
 the respective proportions of priority and non-priority customers in the 

system; 

- The average times of services in the system are given by their weighted averages 
1

𝛾
  𝑒𝑡 

1

𝛿
 respectively for priority and non-priority customers; 

- The average service rate in the system is given by: 

1

𝜇
= 𝑝 (

1

𝛾
) + 𝑞 (

1

𝛿
) =

1

𝜆
(
𝜆1

𝛾
+

𝜆2

𝛿
)                                                                                                 (51) 

- The traffic intensity in the system is given by: 
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𝜌 =
𝜆

𝜇
=

𝜆1

𝛾
+

𝜆2

𝛿
= 𝜌1 + 𝜌2.                                                                                                        (52) 

 

Consider the following transition diagram (Fig. 1): 

 

 

Fig 1. Transition diagram 

Description of the transition diagram: 

- Arrival of a priority client, the system goes from state (𝑚, 𝑛)to state (𝑚 + 1, 𝑛)with a transition rate 

𝜆1. 

- The arrival of a non-priority customer, the system goes from state (𝑚, 𝑛)) to the state (𝑚, 𝑛 + 1)with 

a transition rate 𝜆2. 

- The service of a non-priority customer is over; the system transitions from state (0, 𝑛)to state 

 (0, 𝑛 − 1), (𝑛 ≥ 1), with a transition rate 𝛿. 

- The service of a priority customer is completed; the system transitions from state (𝑚, 𝑛)to state 

(𝑚 − 1, 𝑛)with a transition rate  𝛾. 

 

From this description follow the following balance equations:  

(𝜆1 + 𝜆2)𝑝(0,0)(𝑡) = 𝛾𝑝1,0(𝑡) + 𝛿𝑝0,1(𝑡)(1 − 𝑒−𝛼𝑡)                                                                                  (53) 

 (𝜆1 + 𝜆2 + 𝛾)𝑝𝑚,0(𝑡) = 𝛾𝑝𝑚+1,0(𝑡) + 𝜆1𝑝𝑚−1,0(𝑡)(1 − 𝑒−𝛼𝑡)                                                               (54)  

(𝜆1 + 𝜆2 + 𝛿)𝑝0,𝑛(𝑡) = 𝛾𝑝1,𝑛(𝑡) + (𝛿𝑝0,𝑛+1(𝑡) + 𝜆2𝑝0,𝑛−1(𝑡)) (1 − 𝑒−𝛼𝑡),                                           (55)                                  

 (𝜆1 + 𝜆2 + 𝛿)𝑝0,𝑛(𝑡) = 𝛾𝑝𝑚+1,𝑛(𝑡) + 𝜆1𝑝𝑚−1,𝑛(𝑡) + 𝜆2𝑝𝑚,𝑛−1(𝑡)(1 − 𝑒−𝛼𝑡)                                       (56) 
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Equation (43) applied to 𝑋(𝑡)and 𝑌(𝑡)gives us the following expressions: 

𝑝𝑚(𝑡) = ℙ([𝑋(𝑡) = 𝑚]) = ∑ 𝑝𝑚,𝑛(𝑡) = (1 − 𝜌1)
∞
𝑛=0 𝜌1

𝑚(1 + 𝑒−𝛼𝑡)                                                       (57) 

𝑝𝑛(𝑡) = ℙ([𝑋(𝑡) = 𝑛]) = ∑ 𝑝𝑚,𝑛(𝑡) = (1 − 𝜌1)
∞
𝑚=0 𝜌2

𝑛(1 + 𝑒−𝛼𝑡)                                                           (58) 

By summing and adding member to member on 𝑚, equations (53) and (54) we obtain: 

(𝜆1 + 𝜆2)𝑝0,0(𝑡) + 𝛾 ∑ 𝑝0,0(𝑡)
∞
𝑚=1 = 𝛾 ∑ 𝑝𝑚,0(𝑡)

∞
𝑚=1 + 𝜆1𝑝0,0(𝑡) + 𝛿𝑝0,1(𝑡)(1 − 𝑒−𝛼𝑡)   

Let, 

𝜆2𝑝0,0(𝑡) =  𝛿𝑝0,1(𝑡)(1 − 𝑒−𝛼𝑡)       ∀𝑡 ≥ 0                                                                                               (59) 

The member-to-member sum over 𝑚(55) and (56) gives us: 

(𝜆1 + 𝜆2 + 𝛿)𝑝0,𝑛(𝑡) + (𝜆1 + 𝜆2 + 𝛾)∑ 𝑝𝑚,𝑛(𝑡)
∞
𝑚=0 = 𝛾 ∑ 𝑝1,𝑛(𝑡)

∞
𝑚=1 + (𝛿𝑝0,𝑛+1(𝑡) +

𝜆2𝑝0,𝑛−1(𝑡)) (1 − 𝑒−𝛼𝑡) + 𝛾 ∑ 𝑝𝑚+1(𝑡)
∞
𝑚=0 + 𝜆1 ∑ 𝑝𝑚−1,𝑛(𝑡)

∞
𝑚=0 + 𝜆2 ∑ 𝑝𝑚,𝑛−1(𝑡)

∞
𝑚=0 (1 − 𝑒−𝛼𝑡)  

𝜆1 ∑ 𝑝𝑚,𝑛(𝑡)

∞

𝑚=0

+ 𝜆2 ∑ 𝑝𝑚,𝑛(𝑡)

∞

𝑚=0

+ 𝛿𝑝0,𝑛(𝑡) + 𝛾 ∑ 𝑝𝑚,𝑛(𝑡)

∞

𝑚=0

= 𝛾 ∑ 𝑝1,𝑛(𝑡)

∞

𝑚=1

+ (𝛿𝑝0,𝑛+1(𝑡) + 𝜆2𝑝0,𝑛−1(𝑡)) (1 − 𝑒−𝛼𝑡) + 𝜆1 ∑ 𝑝𝑚−1,𝑛(𝑡)

∞

𝑚=0

 

𝜆2 ∑ 𝑝𝑚,𝑛(𝑡)
∞
𝑚=0 + 𝛿𝑝0,𝑛(𝑡) = (𝛿𝑝0,𝑛+1(𝑡) + 𝜆2𝑝0,𝑛−1(𝑡)) (1 − 𝑒−𝛼𝑡),                                                  (60) 

By induction on (59), (60) becomes: 

𝜆2 ∑ 𝑝𝑚,𝑛(𝑡)
∞
𝑚=0 = 𝛿𝑝0,𝑛+1(𝑡)(1 − 𝑒−𝛼𝑡)                                                                                                  (61) 

By adding (61) member to member over 𝑛 and the fact that ∑ 𝑝𝑚,𝑛(𝑡)
∞
𝑚=0 = 1, we obtain: 

𝜆2 = 𝛿𝑝0,𝑛+1(𝑡)(1 − 𝑒−𝛼𝑡)                                                                                                                        (62) 

Firstly, 

ℙ[𝑋(𝑡) = 0, 𝑌(𝑡) > 0] = ∑ 𝑝0,𝑛(𝑡)
∞
𝑛=1 =

𝜆2

𝛿
(1 − 𝑒−𝛼𝑡) = 𝜌2(1 − 𝑒−𝛼𝑡),                                                 (63) 

ℙ[𝑋(𝑡) = 0] = (1 −
𝜆1

𝛾
) (1 − 𝑒−𝛼𝑡) = (1 − 𝜌1)(1 − 𝑒−𝛼𝑡)                                                                    (64) 

On the other hand, 

𝑝0,0,(𝑡) = ℙ[𝑋(𝑡) = 0, 𝑌(𝑡) = 0] = ℙ[𝑋(𝑡) = 0] − ℙ[𝑋(𝑡) = 0, 𝑌(𝑡) > 0] = (1 − 𝜌1)(1 − 𝑒−𝛼𝑡) −

𝜌2(1 − 𝑒−𝛼𝑡) = (1 − 𝜌)(1 − 𝑒−𝛼𝑡)                                                                                                           (65) 

These results above allow us to calculate the performance parameters of non-priority customers. 
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1. Server utilization rate at a time 𝒕, 

𝔲(𝑡) = 1 − 𝑝0,0(𝑡) = 1 − (1 − 𝜌)(1 − 𝑒−𝛼𝑡) = 𝜌 + (1 − 𝜌)𝑒−𝛼𝑡 ,                                           (66) 

2. System throughput on a date  𝒕 : 

      𝑑(𝑡) = (1 − 𝑝0,0(𝑡)) 𝜇 = (𝜌 + (1 − 𝜌)𝑒−𝛼𝑡)𝜇 = 𝜆 + 𝛼𝑒−𝛼𝑡, (67) 

3. Theorem. The average number of non-priority customers in the system at the moment  𝒕 is given 

by the expression  𝑁𝑠2(𝑡) =
𝜌2

1−𝜌
(1 +

𝛿

𝛾

𝜌1

1−𝜌1
) (1 − 𝑒−𝛼𝑡) 

Proof  

In the equilibrium state, this number is given by: 

𝑁𝑠2 = ∑ ∑ 𝑛𝑝𝑚,𝑛(𝑡)
∞
𝑛=0

∞
𝑚=0                                                                                                                  (68) 

Let us note by 

    𝐺𝑚 = ∑ 𝑛𝑝𝑚,𝑛(𝑡)
∞
𝑛=0 = ∑ 𝑛𝑝𝑚,𝑛(𝑡)

∞
𝑛=1                                                                                                    (69) 

And so (68) becomes: 

𝑁𝑠2 = ∑ 𝐺𝑚 = 𝐺0 + 𝐺1 + ⋯∞
𝑚=0                                                                                                                  (70) 

By multiplying equation (55) by 𝑛and summing over 𝑛, both sides of the equation, we obtain: 

(𝜆1 + 𝜆2 + 𝛿)∑ 𝑛∞
𝑛=1 𝑝0,𝑛(𝑡) = 𝛾 ∑ 𝑛𝑝1,𝑛(𝑡)

∞
𝑛=1 + (𝛿 ∑ 𝑛𝑝0,𝑛+1(𝑡)

∞
𝑛=1 + 𝜆2 ∑ 𝑛𝑝0,𝑛−1(𝑡)

∞
𝑛=1 )(1 − 𝑒−𝛼𝑡)   

(𝜆1 + 𝜆2 + 𝛿)𝐺0 = 𝛾𝐺1 + (𝛿𝐺0 − 𝛿 ∑ 𝑛𝑝0,𝑛+1(𝑡)
∞
𝑛=0 + 𝜆2𝐺0 + 𝜆2 ∑ 𝑛𝑝0,𝑛−1(𝑡)

∞
𝑛=0 )(1 − 𝑒−𝛼𝑡)  

(𝜆1 + 𝜆2 + 𝛿)𝐺0 = 𝛾𝐺1 + 𝛿𝐺0 − 𝛿 (
𝜆2

𝛿
) (1 − 𝑒−𝛼𝑡) + 𝜆2𝐺0 + 𝜆2(1 − 𝜌1)(1 − 𝑒−𝛼𝑡). 

𝜆1𝐺0 = 𝛾𝐺1 − 𝜆2(1 − 𝑒−𝛼𝑡) + 𝜆2(1 − 𝑒−𝛼𝑡) − 𝜆2𝜌1(1 − 𝑒−𝛼𝑡)  

Eventually, 

𝐺1 = 𝜌1𝐺0 +
𝜆2

𝛾
𝜌1(1 − 𝑒−𝛼𝑡)                                                                                                                      (71) 

Multiplying (56) by 𝑛 and summing to 𝑛 = 1,2, ..give: 

(𝜆1 + 𝜆2 + 𝛾)∑ 𝑛∞
𝑛=1 𝑝𝑚,𝑛(𝑡) = 𝛾 ∑ 𝑛𝑝𝑚+1,𝑛(𝑡)

∞
𝑛=1 + 𝜆1 ∑ 𝑛𝑝𝑚−1,𝑛(𝑡)

∞
𝑛=1 + (𝜆2 ∑ 𝑛𝑝𝑚,𝑛−1(𝑡)

∞
𝑛=1 )(1 −

𝑒−𝛼𝑡)  , 

Let, 
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(𝜆1 + 𝜆2 + 𝛾)𝐺𝑚 = 𝛾𝐺𝑚+1 + 𝜆1𝐺𝑚−1 + 𝜆2 ∑ 𝑛𝑝𝑚,𝑛−1(𝑡)
∞
𝑛=1 (1 − 𝑒−𝛼𝑡),                                                (72) 

From (57) we know that ∑ 𝑝𝑚,𝑛(𝑡) = (1 − 𝜌1)
∞
𝑛=0 𝜌1

𝑚(1 + 𝑒−𝛼𝑡), in (72) we obtain: 

(𝜆1 + 𝛾)𝐺𝑚 = 𝛾𝐺𝑚+1 + 𝜆1𝐺𝑚−1 + 𝜆2(1 − 𝜌1)𝜌1
𝑚(1 − 𝑒−𝛼𝑡)2                                                               (73) 

For 𝑚 = 1, we have: 

(𝜆1 + 𝛾)𝐺1 = 𝛾𝐺2 + 𝜆1𝐺0 + 𝜆2(1 − 𝜌1)𝜌1(1 − 𝑒−𝛼𝑡)2                                                                             (74) 

Substituting (70) into (74) we obtain: 

(𝜆1 + 𝛾) (𝜌1𝐺0 +
𝜆2

𝛾
𝜌1(1 − 𝑒−𝛼𝑡)) = 𝛾𝐺2 + 𝜆1𝐺0 + 𝜆2(1 − 𝜌1)𝜌1(1 − 𝑒−𝛼𝑡)2   

𝜆1𝜌1𝐺0 + 𝜆2𝜌1
2(1 − 𝑒−𝛼𝑡) + 𝛾𝜌1𝐺0 + 𝜆2𝜌1(1 − 𝑒−𝛼𝑡) = 𝛾𝐺2 + 𝜆1𝐺0 + 𝜆2𝜌1(1 − 𝑒−𝛼𝑡) − 𝜆2𝜌1

2(1 −

𝑒−𝛼𝑡)  

𝛾𝐺2 = 𝜆1𝜌1𝐺0 + 2𝜆2𝜌1
2(1 − 𝑒−𝛼𝑡) + 𝛾𝜌1𝐺0 − 𝜆1𝐺0  

From where 

𝐺2 = 𝜌1
2 (𝐺0 + 2

𝜆2

𝛾
(1 − 𝑒−𝛼𝑡))                                                                                                                   (75) 

For 𝑚 = 2; 

in (73) and by similar reasoning, we obtain: 

 𝐺3 = 𝜌1
3 (𝐺0 + 3

𝜆2

𝛾
(1 − 𝑒−𝛼𝑡))                                                                                                               (76) 

In general 

𝐺𝑚 = 𝜌1
𝑚 (𝐺0 + 𝑚

𝜆2

𝛾
(1 − 𝑒−𝛼𝑡))                                                                                                             (77) 

By summing over 𝑚equation (76), we obtain: 

∑ 𝐺𝑚
∞
𝑚=0 = 𝑁𝑠2 = 𝐺0 ∑ 𝜌1

𝑚∞
𝑚=0 +

𝜆2

𝛾
(1 − 𝑒−𝛼𝑡)∑ 𝑚𝜌1

𝑚∞
𝑚=0                                                                      (78) 

Knowing that the geometric series ∑ 𝜌1
𝑚∞

𝑚=0 =
1

1−𝜌1
, (𝜌1 < 1)and that the series ∑ 𝑚𝜌1

𝑚∞
𝑚=0 =

∑ 𝑚𝜌1
𝑚∞

𝑚=1 =
𝜌1

(1−𝜌1)2
 , therefore equation (78) becomes: 

 𝑁𝑠2 = 𝐺0
1

1−𝜌1
+

𝜆2

𝛾

𝜌1

(1−𝜌1)2
(1 − 𝑒−𝛼𝑡) =

1

1−𝜌1
(𝐺0 +

𝜆2

𝛾

𝜌1

(1−𝜌1)
(1 − 𝑒−𝛼𝑡)),                                        (79)                                                                                                                                                                  

We observe that 𝑁𝑠2is a function of 𝐺0. To do this, let us multiply equation (61) by 𝑛 and sum to 𝑛, we 

obtain: 

𝜆2 ∑ ∑ 𝑛𝑝𝑚,𝑛(𝑡) = 𝛿 ∑ 𝑛𝑝0,𝑛+1(𝑡)(1 − 𝑒−𝑖𝜔𝑡)∞
𝑛=1

∞
𝑛=1

∞
𝑚=0                                                                        (80) 
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𝜆2 ∑ 𝐺𝑚
∞
𝑚=0 = 𝛿 ∑ 𝑛∞

𝑛=0 𝑝0,𝑛(𝑡) − 𝛿 ∑ 𝑛𝑝0,𝑛+1
∞
𝑛=0 (𝑡)(1 − 𝑒−𝑖𝜔𝑡)                                                          (81) 

𝜆2𝑁𝑠2 = 𝛿𝐺0 − 𝛿
𝜆2

𝛿
(1 − 𝑒−𝛼𝑡) = 𝛿𝐺0 − 𝜆2(1 − 𝑒−𝛼𝑡)  

And so 

𝐺0 = 𝜌2 (𝑁𝑠2
+ (1 − 𝑒−𝛼𝑡))                                                                                                                       (82) 

Substituting (82) into (79), we obtain: 

𝑁𝑠2 =
1

1−𝜌1
(𝜌2 (𝑁𝑠2 + (1 − 𝑒−𝛼𝑡)) +

𝜆2

𝛾

𝜌1

(1−𝜌1)
(1 − 𝑒−𝛼𝑡))                                                                  (83) 

𝑁𝑠2 −
𝜌2

1−𝜌1
𝑁𝑠2 =

1

1−𝜌2
(𝜌2 +

𝜆2

𝛾

𝜌1

1−𝜌1
) (1 − 𝑒−𝛼𝑡)                    

𝑁𝑠2 (1 −
𝜌2

1−𝜌1
) =

1

1−𝜌2
(𝜌2 +

𝜆2

𝛾

𝜌1

1−𝜌1
) (1 − 𝑒−𝛼𝑡)  

𝑁𝑠2 =
1

1−𝜌
(𝜌2 +

𝜆2

𝛾

𝜌1

1−𝜌1
) (1 − 𝑒−𝛼𝑡)   

Eventually: 

𝑁𝑠2(𝑡) =
𝜌2

1−𝜌
(1 +

𝛿

𝛾

𝜌1

1−𝜌1
) (1 − 𝑒−𝛼𝑡)     𝑎𝑣𝑒𝑐 (𝜌 = 𝜌1 + 𝜌2 < 1)                                                           (84) 

LIttle's theorem we deduce the following parameters: 

4. The average time of a non-priority customer in the system during a period 𝒕  

�̅�𝑠2(𝑡) =
𝑁𝑠2

𝑑(𝑡)
=

𝜌2

1−𝜌
(1 +

𝛿

𝛾

𝜌1

1−𝜌1
) (1 − 𝑒−𝛼𝑡)

1

𝜆+𝛼𝑒−𝛼𝑡                                                                          (85) 

5. The average time of a non-priority customer in queue for a period 𝒕 : 

  �̅�𝑓2
(𝑡) = �̅�𝑠2

(𝑡) −
1

𝜇
=

𝜌2

1−𝜌
(1 +

𝛿

𝛾

𝜌1

1−𝜌1
) (1 − 𝑒−𝛼𝑡)

1

𝜆+𝛼𝑒−𝛼𝑡 −
𝜌

𝜆
. 

                     =
𝜌2(1+

𝛿

𝛾

𝜌1
1−𝜌1

)(1−𝑒−𝛼𝑡)−(1−𝜌)𝜌

(1−𝜌)𝜆
                                                                                          (86) 

6. The average number of non-priority customers in the queue at moment 𝑡. 

        𝑁𝑓2
= 𝜆�̅�𝑠2

(𝑡) =
𝜌2(1+

𝛿

𝛾

𝜌1
1−𝜌1

)(1−𝑒−𝛼𝑡)−(1−𝜌)𝜌

(1−𝜌)
                                                                                       (87) 
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Numerical example 

With a commercial bank in Kinshasa (DRC), two categories of customers are served at the single 

counter of its branch located in Gombe. The priority category called large customers, that is to say having 

a figure of at least 10 million FC in their account, arrives for operations at the bank following a Poisson 

rate process 𝜆1 = 0,65 and the non-priority category called ordinary customers, having less than a million 

in their respective accounts, arrives to be served according to the same process with a rate 𝜆2 = 0,23 ; 
services are exponential in rate 𝜇 = 0,94. Within a 60-minute interval, determine the performance 

parameters for each category of customers: 

𝑁𝑠1
(𝑡) =

𝜌1(1−𝑒−𝛼𝑡)

1−𝜌1
= 

0,69(1−𝑒−(0,94−0,65)60)

1−0,69
≃ 2  

�̅�𝑠1
(𝑡) =

𝜌1(1−𝑒−𝛼𝑡)

(1−𝜌1)(𝜆+𝛼𝑒−𝛼𝑡)
=

0,69(1−𝑒−(0,94−0,65)60)

(1−0,69)(0,65+(0,94−0,65)𝑒−(0,94−0,065)60)
= 3,45    

𝑁𝑠2
(𝑡) =

𝜌2

1−𝜌
(1 +

𝛿

𝛾

𝜌1

1−𝜌1
) (1 − 𝑒−𝛼𝑡) =

0,24

1−0,93
(1 +

0,65

0,23
 

0,69

1−0,69
) (1 −

1

𝑒(0,94−0,88)60) = 11     

�̅�𝑠2
(𝑡) =

𝜌2

1−𝜌
(1 +

𝛿

𝛾

𝜌1

1−𝜌1
) (1 − 𝑒−𝛼𝑡)

1

𝜆+𝛼𝑒−𝛼𝑡 =
0,244

1−0,93
(1 +

0,69

1−0,69
) (1 −

𝑒−(0,94−0,88)60)
1

0,88+(0,94−0,88)𝑒−(0,94−0,88)60 = 13  

𝑁𝑓1(𝑡) =
𝜌1

2−(𝜌1
2−𝜌1+1)𝑒−𝛼𝑡

1−𝜌1
=

(0,69)2−((0,69)2−0,69+1)𝑒−(0,94−0,65)60

1−0,69
= 1    

�̅�𝑓1(𝑡) =
𝜌1

2−(𝜌1
2−𝜌1+1)𝑒−𝛼𝑡

(1−𝜌1)(𝜆+𝛼𝑒−𝛼𝑡)
=

(0,69)2−((0,69)2−0,69+1)𝑒−(0,94−0,65)60

(1−0,69)(0,65+(0,94−0,65)𝑒−(0,94−0,65)60)
=  0,42                       

𝑁𝑓2 =
𝜌2(1+

𝛿

𝛾

𝜌1
(1−𝜌1)

)(1−𝑒−𝛼𝑡)−(1−𝜌)𝜌

(1−𝜌)𝜆
=

0,24(1+
0,69

1−0,69
)(1−𝑒−(0,94−0,88)60)−(1−0,93)0,93

(1−0,93)0,88
=

0,687838

0,07
= 11    

�̅�𝑓2
(𝑡) =

𝜌2 (1 +
𝛿
𝛾

𝜌1

(1 − 𝜌1)
) (1 − 𝑒−𝛼𝑡) − (1 − 𝜌)𝜌

(1 − 𝜌)𝜆

=
0,24 (1 +

0,69
1 − 0,69

) (1 − 𝑒−(0,94−0,88)60) − (1 − 0,93)0,93

(1 − 0,93)0,88
= 8,64 
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Graphical representation of performance parameters a function of time 

 

 

Fig.2. Performance parameters a function of time 

 

3. DISCUSSION 

The results obtained through this numerical example reflect the differences in the time spent by priority and 

non-priority customers in the queue. The same is true of their numbers in the system in a given time interval 

t. In contrast to the results expressed by (Mabela and et al., 2021) in the transient regime without priority 

and Lama steady-state with top priority, this model has the advantage of reducing waiting time for priority 

customers. 

4. CONCLUSION 

At the end of this thought on the performance measurements of a queuing system with absolute priority in 

a transient state, model M/M/1, the main question was to determine the performance parameters of non-

priority customers in a transient state. To achieve this, we have relied on Kolmogorov equations, state 

probabilities, Laplace transforms, transition matrices and Little’s theorem. In the existing literature, nothing 

similar has been established in a transitional regime with absolute priority. This is what marks the originality 

and substantial contribution of this reflection in the field of queues.  The same reflection will be carried out 

in a fuzzy environment in the long run. 
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