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Environmental factors like temperature, solar irradiance, and rain may 
influence the health and productivity of stingless bees. This paper aims 
to investigate the best approaches applied in meliponiculture to predict 
beehive health and products based on environmental variables and bee 
activity data. The data on temperature, humidity, rain, beehive weight, 
and bee activity traffic utilized in this project were monitored in real-
time and saved on the Google Spreadsheet platform. The dataset 
extracted from the 6th of January 2024 to the 5th of February 2024, at a 
15-minute time interval comprising a total of 2577 data points was
analyzed using various deep learning approaches for best RMSE
performance. A single-layer LSTM model with 50 units produced the
best RMSE performance of 0.039, representing that the beehive weight
was accurately predicted. This predictive capability can help farmers
determine the optimum harvesting time based on weight forecasts,
ensuring maximum yield and quality. Additionally, by providing early
warnings of unwanted conditions such as swarming or potential attacks,
this method significantly enhances the ability of beekeepers to take
proactive measures to protect their colonies, safeguarding both bee
populations and the livelihoods of farmers.

Keywords: 
Meliponiculture 
Stingless Beekeeping 
Deep Learning 
LSTM 
RNN 

DOI: 
10.24191/jcrinn.v9i2.451 

1. INTRODUCTION

The technical term for the beekeeping process of stingless bee ‘Kelulut’ is known as meliponiculture, 
whereas the traditional beekeeping of honeybee species is known as apiculture. The name of stingless bees’ 
superfamily is Apoidea, and the family is Apidae, hence the subfamily is Meliponinae. This subfamily 
includes two main genera, Meliponi and Trigona, with over 500 species thriving in tropical regions for over 
65 million years (Roubik, 2006). Environmental factors such as temperature, humidity, rain, and solar 
irradiance are most influenced by the health and productivity of bee colonies. Bees frequently regulate their 
hive temperature between 33°C and 36°C to prevent stress and overheating inside the beehive (Becker et 
al., 2018). Meanwhile, higher humidity may promote fungus and mold growth in the region with higher 
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humidity air. This increases the risk of viruses and bacterial infections, leading bees to avoid affected areas 
for brood cells and food storage. The rising in global temperatures and unbalanced air moisture may lead 
to unwanted situations like colony death (Zacepins et al., 2011), swarming (Rybin et al., 2017), low-quality 
honey (Meitalovs et al., 2009), and colony disappearance (Kridi et al., 2016). This research aims to 
investigate a short-term forecasting model utilizing a deep learning approach to predict honey production, 
hence observing the beehive health conditions. The system may help beginner farmers conduct habitat 
surveys to improve and maintain colony quality and health. 

1.1 Data Analysis 

Deep and machine learning approaches are tools utilized in time series analysis. The algorithm can be 
categorized into three types: supervised, unsupervised, and reinforcement learning. Deep learning is a 
subset of machine learning and involves hierarchical learning to build complex concepts. Examples of 
supervised learning algorithms include Feedforward Neural Networks (FFNNs), Convolutional Neural 
Networks (CNNs), Recurrent Neural Networks (RNNs), Long Short-term Memory (LSTM) models, and 
Gated Recurrent Units (GRUs). Traditional statistical methods like Autoregressive Moving Average 
(ARMA) and Seasonal Autoregressive Integrated Moving Average (SARIMA) have been used for time 
series forecasting. However, Artificial Neural Networks (ANN) and recurrent Neural Networks (RNN) 
models are now being explored for their ability to capture spatial and temporal features from time-series 
data, with LSTM and GRU networks providing superior performance in learning long-term dependencies 
(Bontempi et al., 2013; Mahesh, 2018; Usama et al., 2019). In beekeeping, there is limited research applying 
deep and machine learning to data analysis especially in meliponiculture.  
Table 1 outlines the previous studies in beekeeping related to the deep and machine learning approach. 
Significant study in meliponiculture by (Gomes et al., 2020) performed forecasted of stingless bee forager 
activity patterns, by experimental up to 60 hours forecasting window size based on the bee activity data, 
video observations, and solar irradiance data near the hive entrance. 

Beekeeping 
species Method Research 

Output 
Strength Limitations Reference 

Meliponiculture Deep 
learning 

Bee activity 
forecast 

Integrating local 
meteorological data with bee 
traffic data near the hive 
entrance to forecast bee 
activity with a window size of 
up to 60 hours 

Utilizing RFID tags 
glued to the bees' 
thoraxes to capture bee 
traffic data; limited to 
short-term monitoring 
(bees' lifespan is short), 
reduce bees' flight 
capacity, and required 
regular maintenance. 
 

Gomes et 
al. (2020) 

Apiculture Machine 
Learning 

Queen bee 
classification 

Contactless method to 
differentiate various queen bee 
situations inside the hive 

Utilizes offline recorded 
data that does not 
accurately reflect the live 
conditions inside the 
hive. 
 

Howard et 
al. (2013) 

Apiculture Machine 
Learning 

Beehive health 
classification 

utilized large-scale apiary data 
collected over 3 years and 
employed a classification 
model to detect the health 
status of hives, identifying 
them as healthy, unhealthy, or 
collapsed. 
 

Used offline data to 
classify hive conditions, 
which do not reflect live 
conditions or forecast 
future events. 

R. Braga, 
G. Gomes, 
Rogers, et 
al. (2020) 

Table 1. The summary of the deep and machine learning approach applied in the research of beekeeping 

https://dx.doi.org/10.24191/jcrinn.v9i2.451
https://dx.doi.org/10.24191/jcrinn.v9i2.451


246                                                 Khairul Anuar et al. / Journal of Computing Research and Innovation (2024) Vol. 9, No. 2 

https://dx.doi.org/10.24191/jcrinn.v9i2.451
 
 ©Authors, 2024 

Apiculture Machine 
Learning 

Swarming and 
brood-rearing 
classification 

 
Classify the honeybee state in 
the winter season 

 
Depending on the 
temperature data only 

Armands 
Kviesis, 
2016; 
Kviesis et 
al. (2020) 

2. METHODOLOGY 

2.1 The Dataset 

In this study, data on environmental and bee activities were collected from the 6th of January 2024 to 
the 5th of February 2024, at a 15-minute time interval comprising a total of 2577 data points. Variables 
consist of temperature, humidity, beehive weight, and bee traffic activity downloaded from the wireless 
stingless bee monitoring system located at the 'Kelulut Farm' of Kolej Dato’ Onn Jaafar, Universiti 
Teknologi Malaysia in Johor, Malaysia (Latitude: 1.575534, Longitude: 103.61971). The developed 
meliponi monitoring system pushed and stored the observed variables to Google Spreadsheet. The selection 
criteria for the bee colony samples include factors such as species, health condition, and age. The chosen 
species for this study is the stingless bee, Heterotrigona itama. This species is preferred due to its common 
presence in the study area, its reputation for producing high-quality products, and its hardworking nature, 
making it an easily accessible sample pool. Fig. 1(a) presents the system environments, Fig. 1(b) shows the 
frontal view of the monitoring system, and Fig. 1(c) provides an inner view of the monitoring system used 
in this project. The Meliponi monitoring system utilizes sensors such as the DHT22 for temperature and 
humidity, Load Cell for beehive weight, and two pairs of infrared emitters and photoresistors for counting 
departing and arriving bees (representing bee activity). Fig. 2 shows an example of the Google spreadsheet 
page where the observed variables are being pushed and stored frequently. In addition to the variables 
extracted from the monitoring system, some environmental data from the Solcast Satellite system were 
downloaded for similar time intervals (15 minutes) to ensure data synchronization during the analysis 
(Solcast, 2019). 

 

 

 

 

 

 

 

 

 

 

Fig. 1. (a) The monitoring system environments (b) The frontal view of the monitoring system (c) An inner view 
of monitoring hardware consisting of microcontroller and solar rechargeable battery power system  
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Fig. 2. The screenshot of the Google Spreadsheet page for saving the observed variables from the monitoring 
system 

2.2 The Model 

Time series are analyzed for various purposes, such as forecasting future trends based on past data, 
gaining insights into underlying phenomena, and providing concise summaries of key characteristics. In 
this study, the RNN, LSTM, and GRU time series models were rigorously tested to evaluate their 
performance and effectiveness. First, the input dataset undergoes data preparation, segmentation, and 
splitting into training and testing sets. Next, network design analysis is performed to tune the model and 
hyperparameters for optimal performance. Finally, the model is trained and evaluated using specific metrics 
to assess its performance. Initially, nine variables were chosen as input for this study: beehive weight (kg), 
outside hive temperature (°C), relative humidity (%), inside hive temperature (°C), inside hive relative 
humidity (%), the number of incoming and outgoing bees passing through the beehive funnel, rain status 
(0 for no rain and 1 for rain), and the GHI reading from the Solcast satellite to represent solar irradiance. 
After a feature selection process utilizing correlation analysis, only the most influential variables were 
retained as inputs to ensure better model performance. The data were then filtered to select the optimal 
inputs for the system. Subsequently, the models used in this study, including RNN (Recurrent Neural 
Network), LSTM (Long Short-Term Memory), and GRU (Gated Recurrent Unit), were tested and 
validated. For the RNN deployment, Keras (https://keras.io) with the Theano 
(http://deeplearning.net/software/theano) backend was utilized. Scikit-Learn (https://scikit-
learn.org/stable) was also employed for obtaining metrics and methods for normalization. The RNN was 
built using Python 3.7. 

2.2.1. The Linear Correlation Analysis 
Linear correlation analysis is crucial for understanding the relationships between observed attributes, 

assessing data quality and reliability, and supporting predictive modeling, feature selection, and decision-
making. To avoid 'not a number' (NaN) results during correlation analysis, it is important to address missing 
and constant values within each variable. In dataset cycle 1, the inside humidity variable consistently 
exhibited a constant value of 99 for most of its data. The `pandas.corr()` function in Python handles missing 
values through pairwise deletion, calculating correlations using only rows with non-missing values for both 
variables. When two variables have zero variance, their correlation cannot be computed, resulting in NaN 
values in the correlation matrix. Therefore, the inside humidity variable was removed for the correlation 
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analysis. The resulting correlation matrix for dataset cycle 1, after excluding the inside humidity attribute, 
is shown in Fig. 3. 

 

Fig. 3. The correlation matrix heatmap of the dataset from 6th January 2024 to 5th January 2024 

The correlation heatmap provides insights into the relationships between various variables. For the 
first column, outside and inside temperature variables show a strong positive correlation of 0.74, indicating 
that as outside temperature increases, inside temperature also tends to increase. Additionally, both outside 
and inside temperatures have strong negative correlations with outside humidity, at -0.97 and -0.76 
respectively, suggesting that higher temperatures are associated with lower humidity levels. The beehive 
weight variable shows a weak positive correlation with outside temperature (0.15) and inside temperature 
(0.26), but a moderate negative correlation with outside humidity (-0.19), indicating that warmer and drier 
conditions may slightly increase hive weights. Both bee count variables (incoming and outgoing bees) 
exhibit moderate positive correlations with outside temperature (0.55 and 0.63) and moderate negative 
correlations with outside humidity (-0.54 and -0.62), suggesting that warmer temperatures and lower 
humidity levels may be associated with higher bee activity. The correlation between bee counts and rain 
status shows a weak positive correlation, indicating that rainy conditions may not much impact bee activity 
and environmental conditions. Lastly, the GHI (Global Horizontal Irradiance) has a strong positive 
correlation with temperature and a strong negative correlation with humidity, suggesting that higher solar 
irradiance is associated with warmer and drier conditions. Since all variables show weak to moderate 
correlations, the first model investigation will consider all variables to decide the best model topology for 
this study. In the investigation of the best network topology to forecast the beehive weight, some 
combinations of networks consisting of RNN, LSTM, and GRU were tested. Six different topologies were 
experimented with in this study consisting of 1-layer RNN networks with 50 units, 1-layer LSTM with 50 
units, 2-layer LSTM networks with 50 units, 1-layer Stacked LSTM networks with 50 units, 1-layer 
Bidirectional LSTM with 50 units, and 1-Layer GRU networks with 50 units. 

Fig. 4 illustrates an example of a model architecture using LSTM networks. Variations may include 
other networks such as RNN and GRU, as previously described. The model predicts the beehive's weight 
(kg) based on various input features. It consists of an input layer, two hidden LSTM layers, and an output-
dense layer. The input layer accepts 9 features: hive weight (kg), inside hive temperature, inside hive 
humidity, outside hive temperature, outside hive humidity, rain status, incoming bee count, outgoing bee 
count, and solar irradiance. The datasets were segmented into train and test data approximately 70% and 
30 % respectively. During the training process, the model was fitted to the training network, monitoring the 
convergence of the loss function over epochs (set to 50 times) to evaluate learning effectiveness and tuning 
hyperparameters such as batch size (16, 32, 64, and 128).  
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After training, the model evaluation process involved using unseen testing (remaining 30%) data to 
assess the model's generalization performance and calculating metrics such as Root Mean Square Error 
(RMSE), R-squared (R²), Mean Absolute Percentage Error (MAPE), and Mean Absolute Error (MAE). R² 
measures the proportion of variance in the dependent variable that is predictable from the independent 
variables, with a higher R² (close to 1) indicating a better fit. RMSE measures the square root of the average 
squared differences between actual and predicted values. MAPE calculates the average percentage 
difference between actual and predicted values. MAE computes the average absolute difference between 
actual and predicted values, with lower RMSE, MAPE, and MAE values indicating better accuracy. This 
method is crucial for gauging the model's accuracy and performance. If the performance is unsatisfactory, 
adjusting hyperparameters or retraining the model may be necessary. 

 

 

Fig. 4. The example of model architecture using two-layer LSTM networks 

3. RESULT 

In the first evaluations, various network designs were experimented with for dataset training and tests to 
find the best and lowest RMSE results. Table 2 presents a performance summary comparing various 
Multivariate Time Series Forecast Models, evaluated using Root Mean Square Error (RMSE). The LSTM 
networks, both single-layered and two-layered, achieve the lowest RMSE values, ranging from 0.040 to 
0.049, with no significant difference between the two. The Bidirectional LSTM network also shows a low 
RMSE of 0.047. Based on these findings, this study has selected a single-layer LSTM network with 50 
LSTM units for further analysis. This choice is motivated by the simplicity of the design, given the 
negligible variations in accuracy among the different architectures, thereby minimizing complexity. By 
evaluating Model 1, a 1-layer LSTM with 50 units, the loss function and optimizer were varied to tune and 
stabilize model performance. The experiment found that using the Mean Absolute Error (MAE) loss 
function and the Adam optimizer yielded the most accurate results for this dataset, achieving an RMSE of 
0.038. The optimal batch size was determined to be 16.  

Fig. 5(a) illustrates the epoch evaluation trends for both training and testing of Model 1. The 
decreasing trends in the plot indicate that the model is effectively learning from the data. The dashed line, 
representing testing loss, shows a slightly higher value before approximately 20 epochs, indicating the 
model's ability to generalize to new, unseen data. This suggests that the model is not significantly 
overfitting. After around 20 epochs, the model's performance stabilizes, indicating that additional training 
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beyond this point will not yield further improvements. This stabilization suggests that the model has reached 
its learning capacity. The exact point of stabilization may vary depending on changes in hyperparameters 
such as the learning rate, the number of LSTM units, and the batch size. Fig. 5(b) presents the forecasted 
beehive weight plotted against the actual data. The white region represents the training phase using 
approximately 1,800 data points (about 70% of the total dataset). The green region indicates the 
testing/forecast phase using the remaining 776 data points, which make up 30% of the total dataset of 2,577 
data points. 

The process resulted in an RMSE of 0.039, and the R-squared coefficient of determination was 0.924, 
which is close to one. An R-squared value near one indicates a near-perfect fit of the model, while a value 
of zero would suggest no explanatory power. The Mean Absolute Percentage Error (MAPE) for this forecast 
testing is 0.492, with lower MAPE values generally indicating greater predictive accuracy. Additionally, 
the Mean Absolute Error (MAE) for the forecast testing is 0.028, reflecting the average magnitude of errors 
between the forecasted and actual values. A lower MAE value signifies higher accuracy. In summary, the 
testing process of the developed model demonstrates strong performance, evidenced by low RMSE and 
MAE values, and a high R-squared value, indicating accurate and reliable predictions. 
Table 2. The summary of training and testing performance between various multivariate time series forecast topology 

Model Networks Layer Units RMSE 

1 LSTM 1 50 0.040 

2 LSTM 1 100 0.049 

3 LSTM 2 50 0.047 

4 Stacked LSTM 1 50 0.070 

5 Bidirectional LSTM 2 50 0.047 

6 RNN 2 50 0.087 

7 GRU 2 50 0.051 

 

 

Fig. 5. (a) The epoch evaluation trends for both training and testing of Model 1 (b) The training and forecast of 
beehive weight from the saved models 
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4. CONCLUSION 

This study focuses on using deep learning approaches to forecast the beehive weight at 15-minute time 
intervals before the events. Data was collected from a monitoring system in ‘Kelulut Farm’, located at 
Universiti Teknologi Malaysia, including environmental variables and bee activities data. Nine variables, 
including beehive weight, temperatures, humidity, bee count, rain status, and GHI reading were initially 
selected. After a feature selection process, only influential variables were retained. Various models, 
including RNN, LSTM, and GRU, were tested and validated. Correlation analysis revealed relationships 
between variables, such as temperature and humidity, bee activity, and solar irradiance. All variables will 
be considered for the first model investigation. The various models such as RNN, LSTM, and GRU were 
experimented with various network topologies such as 1-layer RNN, LSTM, stacked LSTM, bidirectional 
LSTM, and GRU networks with 50 units for beehive weight forecasting resulted in single-layer LSTM with 
50 units produce best fits in RMSE 0.039, represented the beehive weight were predicts accurately before 
the events. 
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