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 Maji et al. expanded on soft set theory by introducing fuzzy soft set 
theory, offering a versatile approach for tackling problems marked by 
uncertainty and fuzziness, while effectively modelling and representing 
data. The authors developed a matrix representation within this fuzzy 
soft set framework and explored various properties of these matrices. 
Despite this, existing applications of interval-valued fuzzy soft matrices 
in group decision-making often assume equal importance for all criteria, 
which fails to capture the true preferences of decision-makers. 
This study proposes a novel approach to group decision-making through 
the Interval Valued Fuzzy Soft Max-min Decision-Making Method 
(IVFSMmDM), which considers the varying importance of each 
criterion, followed by using the Fuzzy Soft Max-min decision-making 
technique to prioritize decisions. The integration of these methods 
provides a more accurate and practical decision-making framework. 
The effectiveness of IVFSMmDM is illustrated through a detailed 
numerical example in the context of manpower recruitment, involving 
the selection of 7 programmers for a software development 
organization’s team. The results indicate that Programmer 5 was chosen, 
achieving the highest-ranking value of (0.019, 0.021). This highlights 
the practical utility and effectiveness of the Interval Valued Fuzzy Soft 
Max-min Decision-Making Method in real-world decision-making 
scenarios. 
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1. INTRODUCTION 

Numerous challenges encountered in fields such as engineering, management, social sciences, and 
medicine often involve data characterized by inherent uncertainties, rather than being precise or 
deterministic. To navigate these complexities, traditional concepts such as probability, fuzzy sets, 
intuitionistic fuzzy sets, interval mathematics, and rough sets have been employed. Nevertheless, these 
approaches present certain limitations. In response to these shortcomings, Molodtsov introduced soft set 
theory in 1999, which provides a framework that remains unaffected by the parameterization challenges 
faced by other methodologies. Since its introduction, soft set theory has gained traction and found extensive 
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applications in diverse domains, including decision–making and data mining. Significant contributions 
have been made by researchers such as Maji et al. (2002), Kong et al. (2021), Qin et al. (2021), and Feng 
et al. (2016, 2020), who have applied the TOPSIS method for decision-making within the context of soft 
sets. Furthermore, studies by Zulqarnain (2020), Maharana (2021), and Tripathy et al. (2019) have 
concentrated on parameter reduction and the advancement of new mathematical tools pertinent to soft set 
theory. Additionally, Sai (2020) has offered a thorough overview of its applications in decision-making, 
highlighting the considerable importance of soft set theory in this area. 

Regenerate response fuzzy soft sets extend soft sets by incorporating fuzzy numbers, a concept 
developed by Zadeh in 1965 to handle uncertainties in real-life situations. These sets are characterized by 
a membership function that assigns a grade of membership to each object. Liu and Kwon (2007) further 
expanded the concept by considering parameters as fuzzy hedges or fuzzy parameters and defining 
operations on fuzzy soft groups. Shagari and Azam (2020) proposed a novel algorithm for decision-making 
in a fuzzy soft set environment, enhancing object discrimination and inference. Qin et al. (2021) presented 
a new approach to decision-making using interval-valued fuzzy soft sets, incorporating a contrast table to 
address extreme values and outliers. In 2019 Khalil and Hassan, introduced the idea of inverse fuzzy soft 
sets and their application in decision-making, providing more mathematical insight for decision-makers. 
Das et al. (2022) defined various practical operations on fuzzy soft sets, including the algebraic sum, 
bounded sum, and Einstein product, and investigated the basic properties of these new operations. These 
studies collectively contribute to the development of decision-making techniques based on soft set theory. 

Cagman and Enginoglu (2013) advanced the practical use of fuzzy soft sets by defining fuzzy soft 
matrices, particularly for decision-making under uncertainty. They redefined the four products in soft 
matrices as fuzzy soft matrix products and investigated their properties. Using the fuzzy soft max-min 
decision function and the "And" product of fuzzy soft matrices, they developed the Fuzzy Soft Max-min 
Decision-Making (FSMmDM) method tailored for scenarios with two decision makers. Subsequent studies 
by Khalil and Hassan (2019) and Razak et al. (2013) further explored the use of FSMmDM in different 
contexts. Razak et al. (2017) introduced a hierarchical approach to fuzzy soft matrices and group decision-
making, while Khalil developed inverse fuzzy soft sets for decision-making applications. Enginoğlu and 
Memis (2020) refined the criteria weighted FSMmDM approach with two new algorithms that enhanced 
its complexity and efficiency. These contributions highlight the flexibility and effectiveness of FSMmDM 
in managing uncertainty and vagueness in decision-making. 

The concept of Interval-Valued Fuzzy Soft Sets (IVFSS) has been explored for various applications. 
Shanthi and Gaynthri (2020) introduced the normalized Euclidean distance between IVFSS establishing it 
as a metric, while Lambodharan (2019) discussed IVFSS operations and their properties, including 
principal disjunctive and conjunctive normal forms. Zulqarnain (2017,2020) applied IVFSS in a medical 
context for patient identification. In 2021, Silambarasan introduced Hamacher operations, scalar 
multiplication, and exponentiation for interval valued fuzzy matrices, enhancing their algebraic properties. 
Interval-valued fuzzy soft sets (IVFSS) have become an effective tool for managing uncertainty in decision-
making processes. This approach integrates interval-valued fuzzy sets with soft set theory, providing a more 
adaptable way to represent membership degrees (Abdul & Musheer, 2020). Interval-valued fuzzy soft sets 
(IVFSS) have been applied to various real-world evaluation systems, such as those for apartments, 
universities, and stock markets (Qin & Ma, 2018; Sooraj & Tripathy, 2017). Researchers have developed 
comprehensive models for these evaluation systems using IVFSS, incorporating steps like data collection, 
decision-making, parameter reduction, and data set integration (Qin & Ma, 2018). Further expansions, like 
interval-valued hesitant fuzzy soft sets, have been proposed to enhance the model’s effectiveness (Sooraj 
& Tripathy, 2017). Recent progress includes the formulation of interval-valued fuzzy soft preorderings and 
equivalence relations, as well as the creation of scoring functions for multi-group decision-making 
challenges (Ali & Kılıçman, 2021). 
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The previous research based on IVFSS already applied to decision-making problems, however, the 
combination of determination criteria weight by using proper the method with IVFSS remains relatively 
unexplored. To address this gap, this study proposes a novel method, the IVFSMmDM, which integrates 
the fuzzy AHP Lambda-max method for more objective criteria weighting and efficient resolution of 
decision-making problems. The fuzzy AHP method is straightforward to compute and provides a definite 
value directly from experts, but it doesn't fully capture the human thinking style. The findings of this study 
will significantly contribute to addressing group decision-making problems. We developed a graphical 
model for the IVFSMmDM method using the IVFSMmDM function incorporating with Fuzzy AHP 
Lambda-Max method.  

1.1 Preliminaries 

1.1.1.  Fuzzy Soft Matrix  
A fuzzy set represents a group of elements characterized by a membership grade ranging continuously 

from 0 to 1, inclusive. A triangular fuzzy number, represented by the 3–tuple (l, m, u), is a convex and 
normal fuzzy set with the highest membership grade of 1. It is characterized by the membership function 
defined as: 

 
Maji et al. (2022) defined fuzzy soft set theory as a generalization of standard soft sets in the following 
manner: 

Definition 1: Let  U  be an initial universe set and E be a set of all parameters. Let F (U) denote the set of 
all fuzzy sets in .U  Then ),~( AF  is called a fuzzy soft set over U  where EA ⊆  and F~  is a mapping given 
by 

→AF :~ F )(U  

In general, for every Ax∈ , ][~ xF is a fuzzy set inU and it is called a fuzzy value set of parameter x. If every
][~, xFAx∈ is a crisp subset ofU , then ),( AF  is degenerated to be the standard soft set. 

Cagman and Enginoglu (2012) developed a fuzzy soft decision-making method by the following definition. 

Definition 2: Let ),~( AF be a fuzzy soft set over U , where },,,{ 21 muuuU = be an initial universe set, 
},,,{ 21 neeeE = be a set of parameters, and EA ⊆ . For Uui ∈∀ and Ee j ∈∀ , there exists a 

membership degree )(][ ieij ufa
j

= , then all the membership degrees will be presented as in Table 1: 
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Table 1. Evaluation of membership degrees fuzzy soft matrices )( nmFSM ×  

 1e  2e    ne  

1u  ),( 11 euXRA  ),( 21 euXRA    ),( 1 nA euXR  

2u  ),( 12 euXRA  ),( 22 euXRA    ),( 2 nA euXR  
          
mu  ),( 1euXR mA  ),( 2euXR mA    ),( nmA euXR  
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][ is called interval fuzzy soft matrix of ),
~

( AF over U

(Basu et al. 2014). 

Definition 3: Let nmikij FSMba ×∈][],[ . The And-product ∧  between ][ ija and ][ ikb is defined by

2: nmnmnm FSMFSMFSM ××× →×∧ , ][][][ ipikij tba =∧ , where },min{][ ikijip bac = such that .)1( kjnp +−=  

1.1.2. Interval Valued Fuzzy Soft Matrix  
Definition 4: Let ),( AF be an interval valued fuzzy soft set over U  . Then a subset of  EU × is uniquely 
defined by 

)}(,:),{( EFuAeeuR AA ∈∈=  

which is called a relation form of ),( EFA . Now the relation AR is characterized by the membership function 
])1,0([IntEU →× such that 
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where Int ([0,1]) stands for the set of all closed sub-intervals of [0,1] and )](),([
)()( uu

eFeF
AA

+− µµ denotes the 

interval–valued fuzzy membership degree of the object u associated with the parameter e . 

Now if the set of universes },,,{ 21 muuuU = be an initial universe set, },,{ 21 neeeE =  be a set of 
parameters then AR can be presented by a table in the following form 

Table 2. Evaluation of membership degrees interval value fuzzy soft matrices )( nmIVFSM ×  

 1e  2e    ne  

1u  )( 1,1 euAµ  )( 2,1 euAµ    )( ,1 nA euµ  
2u  )( 1,2 euAµ  )( 2,2 euAµ    )( ,2 nA euµ  

          

mu  )( 1,eumAµ  )( 2,eumAµ    )( , nmA euµ  

 

where  )](),([),(
)()( meFmeFnmA uueu

nAnA

+− µµ=µ . If )](),([
)()( ieFieFij uua

jAjA

+−µ= , then from Table 2 we can define 
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which is called an interval fuzzy soft matrix or simply IVFS-matrix of order nm× corresponding to the 
interval-valued fuzzy soft set ),( EFA over U . An interval-valued fuzzy soft set ),( EFA is uniquely 
characterized by the matrix nmija ×)(  

1.1.2.     Fuzzy Soft Max–min Decision Making Method  

Cagman and  Enginoglu (2012)  introduced  a  Fuzzy  Soft  Max–min Decision  Making  Method  by  
using  And–product and defined as follows: 

Definition 5: Let })1(,0,:,][ 2 knpnkbipIFSMb ipknmip ≤<−≠∃=∈ × , {  for all =∈ Ik   },,2,1{ n . Then 
Max-min decision function, denoted Mm, is defined as follows: 
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The one column soft matrix ][ ipbMm is called max-min decision fuzzy soft matrix. 

Proposition 1: The operators for ∧ and ∨  are defined as follows, for ),( 11 yx , ),( 22 yx ijij ba   and ∈ : 
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Definition 6: Let nmikij FSMIVba ×−∈][],[ . The And-product ∧  between ][ ija and ][ ikb is defined by 
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such that .)1( kjnp +−=  

2. METHODOLOGY 

The Analytic Hierarchy Process (AHP), introduced by Saaty in 1980, is one of the most popular and widely 
used techniques for determining criteria weight. It is highly flexible and can accommodate various types of 
multi-criteria decision-making (MCDM) methods, making it useful as an input for ranking alternatives (Liu, 
Kwon & Kang, 2014). AHP combine the evaluation results and expert opinions with a sophisticated 
decision-making process to create a straightforward, elementary hierarchy. Moreover, AHP can effectively 
manage both qualitative and quantitative data and is easy to compute. It also provides a reliable method for 
checking the consistency of the evaluation criteria and the alternatives selected by the decision maker. Thus, 
it can reduce bias in decision making (Lixiong, Liang & Minzhong, 2010). All the evaluation methods 
among the criteria will be analysed through pairwise comparisons using the AHP. However, AHP’s 
inability to adequately handle the evaluations uncertainty and imprecision in which the human judgement 
is represented in terms of fuzzy numbers (Cheng et al. 2009). Fuzzy sets can be aligned through pairwise 
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comparisons as an extension of AHP to overcome this limitation. Han et al. (2020) applied AHP for road 
selection and obtained a result that preserved the original road network structure. To create a priority list of 
counties based on hazard and exposure vulnerability, Guo (2020) utilized AHP in earthquake risk 
assessment. França (2020) employed AHP to map environmental fragility mapping and provide a hierarchy 
of critical environment criteria. 

The concept of Analytic Hierarchy Process (AHP) was initially extended to fuzzy AHP in 1983 by 
Van Laarhoven and Pedrycz. This approach effectively addresses uncertainty and vagueness inherent in 
subjective performance and decision makers' experiences in solving hierarchical problems. The Lambda-
max method, a key component of fuzzy hierarchical analysis, was introduced by Csutora & Buckley (2001) 
as a technique for determining fuzzy weights. Razak et al. (2012,2013,2017) have utilized fuzzy AHP 
(Lambda–max Method) in determining the criteria weight for the main and sub criteria in solving the group 
decision making problem. The proposed method involves two procedures. The first procedure involves 
determining the criteria weight using Lambda-max method obtained from Razak et al. (2017). The second 
procedure addresses solving group decision making problems. This paper employs IVFSMmDM 
incorporating together with criteria weight. The details of both procedures are given below. 

2.1 Criteria Weight Determination  

The Lambda-max method (Csutora and Buckley, 2012) is used in determining criteria weight. The 
procedure of the Lambda-max method involves 4 steps as follows: 

Step 1: Apply cut−α . To obtain the positive matrix of   decision maker, let 1=α , [ ]smij
s

m rT ~~
= , and let 0=α  

to obtain the lower bound and upper bound positive matrices of decision maker s, [ ]slij
s

l rT ~~
=  and [ ]suij

s
u rT ~~
=

.Calculate the weight vector based on the weight calculation procedure in AHP, 
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li ww )( and )( ∗∗ , .,,2,1 ni =  

Step 3:  By combining the upper bound, the middle bound and lower bound weight vectors, the fuzzy 

weight matrix for decision maker s can be obtained and is defined as   .,,2,1      ),,,(
~ *** niwwwW s

iu
s

im
s

il
s

i ==  

Step 4: Calculate local fuzzy weights and global fuzzy weight with repetition from step 1 until step 3. 

2.2 Interval Valued Fuzzy Soft Max-min Decision Making (IVFSMmDM) Method    

Zulqarnain et al. (2020) introduced an IVFSMmDM by using And–product. They then defined max-
min decision function as follows: 

Definition 7: Let })1(,0:{,][ 2 knpnkcPIIVFSMc ipknmip ≤<−≠=∈ × for all ),3,2,1{ nk ∈ and IVFS max-min 
decision function defined as follows 
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 12: ×× → mnm IVFSMIVFSMMm  
where }][max{][][ 1 ikiip tdcMm == , 
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Definition 8: Let },,,,{ 321 muuuuU =  be an initial universe and ][][ 1iip dcMm = . Then a subset of U can be 
obtained by using ][ 1id as in the following expression 

},0 ,:/{)]([ 11 ≠∈= iiiili dUuudUdOpt which is called an optimum set of U . 
 

Now using definition 8 and 9, the IVFSMmDM method can be developed by the following algorithm: 
 
Step 1: Choose the feasible subsets of the set of parameters. 
Step 2: Use the matrix form to construct the ivfs–matrix for each set of parameters. 
Step 3: Find the And–product for the ivfs–matrices. 
Step 4: Find a max-min decision ivfs–matrix.  
Step 5: Find an optimum set of U . 
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2.3 Development of IVFSMmDM Method with Criteria Weight  

Our proposed decision–making procedure, IVFSMmDM, is outlined as follows: 

Step 1: Assess the membership value of each alternative concerning each criterion in the decision–making 
problem. 

Step 2: Use the matrix form to create the interval value fuzzy soft matrices for each set of criteria. 
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where ][ ijr is an interval fuzzy soft matrix of decision maker k, m represents the number of alternatives 
involved and n refers to the parameters/criteria. 

Step 3: Multiply the matrix from step 2 by the criteria weight wa and compute the values for each 
alternative and then construct the resulting matrix. 
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Step 4: Determine the And-product of interval fuzzy soft matrices ( )( ).  e.g. 1 ADMDM nn =∧−  
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][             (5)  

The resulting fuzzy soft matrix will have a size )( 2nm× , where there are n blocks of )( nm× elements in the 
matrix. 

Step 5: Calculate [ ] [ ]( ) 1iikij dBAMm =∧ , where ni ,,3,2,1 =  

First, we find { } { }11 11 12 13, , 1min min , ,ik nd t t t t t= =  , to find  
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Step 6: Find the max – min decision fuzzy soft matrix, 

.][])[])([( 21
T

nikij uuuBAMm =∧                            (6) 

Step 7: Find an optimum set of 
T

nikijMm TkkTccTbbTaaTBAopt }/],[,,/],[,/],[,/],{[)]([]([ 21321221121 =∧                         (7) 

Step 8: Find an optimum fuzzy set according to ])[](([ ijij SRMm ∧  

3. NUMERICAL EXAMPLE: MANPOWER RECRUITMENT PROBLEM 

As an illustration, we revisit numerical illustration of manpower recruitment by Chaudhuri et al (2013) as 
an example for this paper. In this research we use an interval – valued fuzzy numbers to describe the 
membership degree. Two staffs’ members from the Human Resources Department, referred to as A and B, 
are involved as decision-makers. There are eight criteria considered as a parameter and seven programmers 
to be recruited by a Software Development Organization. The recruitment process for a Software 
Development Organization considers eight criteria as parameters and evaluates seven programmers. The 
criteria weights are calculated using the Lambda – max method, and the IVFSMmDM method is applied to 
prioritize the seven programmers in this decision – making problem. 
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Let   { }7654321 ,,,,,, mmmmmmmU = be a set of seven programmers to be recruited by a Software Development 
Organization by the Human Resources Manager as a possible alternative. The set of parameters 

{ }876543321 ,,,,,,,, eeeeeeeeeE = , where e1, e2, e3, e4, e5, e6, e7, and e8, represent the parameters “hardworking”, 
“disciplined”, “honest”, “obedient”, “intelligence”, “innovative”, “entrepreneurial attitude”, and “aspirant” 
respectively. Intelligence and innovation reflect the programmer's creative mindset, while hard work and 
discipline signify their punctuality. Honesty and obedience indicate the integrity in the programmer's 
behaviour, and an entrepreneurial attitude along with being aspirant highlight their exploratory nature.
  

3.1 Criteria weight for each decision maker 

Table 3 showed the criteria weight by two decision makers calculate by using Lambda-max method 
from each decision makers. The criteria weight obtains from (Razak et al. 2017). 

 

 

 

Table 3: Criteria weight by every decision maker 
CRITERIA DM 1 (WA) DM 2 (WB) 

C1 0.024 0.025 
C2 0.031 0.208 
C3 0.220 0.175 
C4 0.057 0.036 
C5 0.061 0.122 
C6 0.109 0.082 
C7 0.177 0.053 
C8 0.322 0.299 

 

3.2 IVFSMmDM Calculation 
 
Step 1: Assessment of membership degrees by each decision maker 

Step 2: Construct interval valued fuzzy soft evaluation in Step 1 into matrix form, where A and B

refer to decision maker 1 and decision maker 2 respectively. 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]




























=

70.0,60.083.0,80.056.0,50.000.1,95.052.0,50.050.0,45.080.0,75.000.1,90.0
66.0,60.089.0,75.068.0,60.090.0,80.000.1,95.090.0,85.000.1,90.060.0,55.0
00.1,90.000.1,90.082.0,80.080.0,70.070.0,67.089.0,70.070.0,60.000.1,90.0
87.0,80.060.0,50.073.0,70.074.0,70.060.0,50.020.0,10.020.0,10.059.0,40.0
00.1,90.052.0,45.065.0,60.060.0,50.045.0,40.054.0,50.070.0,65.050.0,35.0
50.0,40.078.0,70.080.0,75.050.0,40.080.0,70.086.0,70.000.1,88.070.0,60.0
60.0,55.090.0,85.070.0,60.070.0,60.050.0,40.076.0,70.090.0,70.078.0,70.0

ijA  

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]




























=

00.1,90.057.0,50.076.0,70.086.0,80.063.0,57.075.0,60.000.1,85.056.0,48.0
68.0,60.000.1,90.000.1,86.069.0,60.065.0,60.090.0,80.000.1,90.095.0,85.0
89.0,80.090.0,80.098.0,90.000.1,86.075.0,70.080.0,70.089.0,80.082.0,80.0
00,.90.1082.0,80.089.0,80.098.0,90.000.1,90.080.0,70.079.0,70.065.0,60.0
00.1,85.068.0,60.000.1,90.068.0,60.090.0,80.065.0,60.075.0,70.055.500.0
96.0,85.074.0,65.090.0,85.000.1,90.044.0,40.081.0,70.065.0,60.085.0,80.0
85.0,80.080.0,70.080.0,70.000.1,85.050.0,45.063.0,60.089.0,80.068.0,60.0

ikB  
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Step 3: Integrate the criteria weights for each decision maker into the fuzzy soft matrix. These yields: 

The calculation for this step is:  
]028.0,022.0[)]031.090.0(),031.070.0[(
]019.0,017.0[)]024.078.0(),024.070.0[(

12

11
=××
=××

=

=
a
a  

==× ][][ ijAij RWA  

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]




























225.0,193.0147.0,142.0061.0,055.0061.0,058.0030.0,029.0110.0,099.0025.0,023.0024.0,022.0
213.0,193.0158.0,133.0074.0,065.0055.0,049.0057.0,054.0198.0,187..0031.0,028.0014.0,013.0
322.0,290.0177.0,159.0089.0,087.0049.0,043.0040.0,038.0196.0,154.0022.0,019.0024.0,022.0
280.0,258.0106.0,089.0080.0,076.0045.0,043.0034.0,029.0044.0,022.0006.0,003.0014.0,010.0

0322,290.0092.0,080.0071.0,065.0037.0,034.0026.0,023.0119.0,110.0022.0,020.0012.0,008.0
161.0,129.0138.0,142.0087.0,082.0031.0,024.0046.0,040.0189.0,154.0031.0,027.0017.0,014.0
193.0,177.0159.0,150.0076.0,065.0043.0,037.0029.0,023.0167.0,154.0028.0,022.0019.0,017.0

 

The calculation for this step is:  
]185.0,166.0[)]031.089.0(),031.080.0[(
]017.0,015.0[)]024.068.0(),024.060.0[(

12

11
=××
=××

=

=
a
a  

==× ][][ ijBij SWB  

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]




























299.0,269.0030.0,027.0062.0,057.0105.0,098.0023.0,021.0131.0,105.0208.0,177.0014.0,012.0
203.0,179.0053.0,048.0082.0,071.0084.0,073.0023.0,022.0158.0,140.0208.0,187.0024.0210.0
266.0,239.0048.0,042.0080.0,074.0122.0,116.0027.0,025.0140.0,123.0185.0,166.0021.0,020.0
299.0,269.0043.0,042.0073.0,066.0120.0,110.0036.0,032.0140.0,123.0164.0,146.0016.0,015.0
299.0,254.0036.0,032.0082.0,074.0083.0,073.0032.0,029.0114.0,105.0156.0,146.0014.0,013.0
287.0,254.0039.0,034.0074.0,070.0122.0,110.0016.0,014.0142.0,123.0135.0,125.0021.0,020.0
254.0,239.0042.0,037.0066.0,057.0122.0,104.0018.0,016.0110.0,105.0185.0,166.0017.0,015.0

 

Step 4: By applying the And-product, the product of interval valued fuzzy soft matrices between  ][ ijR and 
][ ijS is obtained as follows: 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]













40.022,0.0240.022,0.0240.022,0.0210.058,0.060.0290.03000.099,0.1140.177,0.0240.012,0.01
40.013,0.0140.013,0.0140.013,0.0150.049,0.0570.054,0.0580.187,0.1940.187,0.0110.014,0.02
40.022,0.0240.022,0.0240.022,0.0290.043,0.0400.038,0.0460.154,0.1940.166,0.0230.020,0.01
40.010,0.0140.010,0.0140.010,0.0150.043,0.0440.029,0.0340.022,0.0460.003,0.0040.010,0.01
20.008,0.0120.008,0.0120.008,0.0170.034,0.0360.023,0.0290.110,0.1120.020,0.0220.008,0.01
90.014,0.0170.014,0.0170.014,0.0110.024,0.0360.040,0.0490.154,0.1810.027,0.0370.014,0.01
90.017,0.0190.017,0.0190.017,0.0130.037,0.0490.023,0.0270.154,0.1680.022,0.0270.015,0.01

 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]50.023,0.0250.003,0.0250.023,0.0250.023,0.0230.021,0.0250.023,0.0250.023,0.0240.012,0.01

10.028,0.0310.003,0.0310.028,0.0310.028,0.0330.022,0.0210.028,0.0310.028,0.0340.021,0.02
20.019,0.0220.019,0.0220.019,0.0220.019,0.0220.019,0.0220.019,0.0220.019,0.0210.019,0.02
60.003,0.0060.003,0.0060.003,0.0060.003,0.0060.003,0.0060.003,0.0060.003,0.0060.003,0.00
20.020,0.0220.020,0.0220.020,0.0220.020,0.020.0200.02220.020,0.0220.020,0.0240.013,0.01
10.027,0.0310.022,0.0310.027,0.0310.027,0.0360.014,0.0110.027,0.0310.027,0.0310.020,0.02
80.022,0.0280.022,0.0280.022,0.0280.022,0.0280.016,0.0180.022,0.0280.022,0.0270.015,0.01
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[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]00.110,0.1100.027,0.0320.057,0.0650.098,0.1030.021,0.0200.099,0.1100.099,0.1140.012,0.01

80.179,0.1930.048,0.0520.071,0.0840.073,0.0830.022,0.0280.140,0.1580.187,0.1940.021,0.02
60.196,0.1980.042,0.0400.074,0.0820.116,0.1270.025,0.0200.123,0.1450.154,0.1810.020,0.02
40.044,0.0430.022,0.0440.022,0.0440.022,0.0460.022,0.0340.022,0.0440.022,0.0460.015,0.01
90.119,0.1160.032,0.0320.074,0.0830.073,0.0820.029,0.0340.105,0.1190.110,0.1140.013,0.01
90.189,0.1890.034,0.0340.070,0.0720.110,0.1260.014,0.0120.123,0.1450.125,0.1310.020,0.02
70.167,0.1620.037,0.0460.057,0.0690.023,0.0280.016,0.0100.105,0.1170.154,0.1670.015,0.01

 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]00.029,0.0300.027,0.0300.029,0.0300.029,0.0330.021,0.0200.029,0.0300.029,0.0340.012,0.01

70.054,0.0530.048,0.0570.054,0.0570.054,0.0530.022,0.0270.054,0.0570.054,0.0540.021,0.02
00.038,0.0400.038,0.0400.038,0.0400.038,0.0470.025,0.0200.038,0.0400.038,0.0410.020,0.02
40.029,0.0340.029,0.0340.029,0.0340.029,0.0340.029,0.0340.029,0.0340.029,0.0360.015,0.01
60.023,0.0260.023,0.0260.023,0.0260.023,0.0260.023,0.0260.023,0.0260.023,0.0240.013,0.01
60.040,0.0490.034,0.0360.040,0.0460.040,0.0460.014,0.0160.040,0.0460.040,0.0410.020,0.02
90.023,0.0290.023,0.0290.023,0.0290.023,0.0280.016,0.0190.023,0.0290.023,0.0270.015,0.01

 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]10.058,0.0600.027,0.0310.057,0.0610.058,0.0630.021,0.0210.058,0.0610.058,0.0640.012,0.01

50.049,0.0530.048,0.0550.049,0.0550.049,0.0530.022,0.0250.049,0.0550.049,0.0540.021,0.02
90.043,0.0480.042,0.0490.043,0.0490.043,0.0470.025,0.0290.043,0.0490.043,0.0410.020,0.02
50.043,0.0430.042,0.0450.043,0.0450.043,0.0460.032,0.0350.043,0.0450.043,0.0460.015,0.01
70.034,0.0360.032,0.0370.034,0.0370.034,0.0320.029,0.0370.034,0.0370.034,0.0340.013,0.01
10.024,0.0310.024,0.0310.024,0.0310.024,0.0360.014,0.0110.024,0.0310.024,0.0310.020,0.02
30.037,0.0420.037,0.0430.037,0.0430.037,0.0480.016,0.0130.037,0.0430.037,0.0470.015,0.01

 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]70.142,0.1400.027,0.0320.057,0.0650.098,0.1030.021,0.0210.105,0.1370.142,0.1440.012,0.01

80.133,0.1530.048,0.0520.071,0.0840.073,0.0830.022,0.0280.133,0.1580.133,0.1540.021,0.02
70.159,0.1780.042,0.0400.074,0.0820.116,0.1270.025,0.0200.123,0.1470.159,0.1710.020,0.02
60.089,0.1030.042,0.0430.066,0.0760.089,0.1060.032,0.0360.089,0.1060.089,0.1060.015,0.01
20.080,0.0960.032,0.0320.074,0.0830.073,0.0820.029,0.0320.080,0.0920.080,0.0940.013,0.01
80.124,0.1390.034,0.0340.070,0.0720.110,0.1260.014,0.0180.123,0.1350.124,0.1310.020,0.02
90.150,0.1520.037,0.0460.057,0.0620.104,0.1280.016,0.0100.105,0.1190.150,0.1570.015,0.01

10.055,0.0600.027,0.0310.055,0.0610.055,0.0630.021,0.0210.055,0.0610.055,0.0640.012,0.01
40.065,0.0730.048,0.0540.065,0.0740.065,0.0730.022,0.0240.065,0.0740.065,0.0740.021,0.02
90.087,0.0880.042,0.0400.074,0.0890.087,0.0870.025,0.0290.087,0.0890.087,0.0810.020,0.02
00.076,0.0830.042,0.0430.066,0.0700.076,0.0860.032,0.0300.076,0.0800.076,0.0860.015,0.01
10.065,0.0760.032,0.0310.065,0.0710.065,0.0720.029,0.0310.065,0.0710.065,0.0740.013,0.01
70.082,0.0890.034,0.0340.070,0.0770.082,0.0860.014,0.0170.082,0.0870.082,0.0810.020,0.02
60.065,0.0720.037,0.0460.057,0.0660.065,0.0780.016,0.0160.065,0.0760.065,0.0770.015,0.01

 

In this step we obtained fuzzy soft matrix of size )( 2nm× , consisting of n blocks of )( nm× elements each. The 
matrix size 87× , transform into a matrix size 647× . 

Step 5: Calculate [ ] [ ]( ) 1iikij dBAMm =∧ , where ni ,,3,2,1 =  

First, we find { } { }181716151413121111 ,,,,,,,maxmax tttttttttd ik == , to find  

11d we need to find kt1 for every 8,,3,2,1 =k , If 1=k and ni = , 11t is { },80,0:1 ≤<≠= PCPI ip  

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]{ }90.017,0.0190.017,0.0190.017,0.0190.017,0.0180.016,0.0100.017,0.1190.166,0.0170.015,0.0111 =t  
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If 2=k and ni = , 12t is { },168,0:1 ≤<≠= PCPI ip  

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]{ }80.022,0.0280.022,0.0280.022,0.0280.022,0.0280.016,0.010.22,0.02880.022,0.0270.015,0.0112 =t  

[ ] [ ] [ ] [ ] [ ] [ ] [ ]{ }30.177,0.1920.037,0.0460.057,0.0620.104,0.1280.016,0.0100.105,0.1150.166,0.1870.015,0.0116 =t


 
Step 6: Find the Max – min decision interval valued fuzzy soft matrix. 

The calculation for this matrix come from step 5 as follows: 
]017.0,015.0[)]019.0,019.0,019.0,019.0,018.0,110.0,019.0,017.0(),017.0,017.0,017.0,017.0,016.0,017.0,166.0,015.0min[( =  





























]014.0,012.0[]014.0,012.0[]014.0,012.0[]014.0,012.0[]014.0,012.0[]014.0,012.0[]014.0,003.0[]014.0,012.0[
]023.0,021.0[]023.0,021.0[]023.0,021.0[]023.0,021.0[]023.0,021.0[]023.0,021.0[]023.0,003.0[]014.0,013.0[
]021.0,019.0[]021.0,019.0[]021.0,019.0[]021.0,019.0[]021.0,019.0[]021.0,019.0[]021.0,019.0[]021.0,020.0[
]016.0,015.0[]016.0,015.0[]016.0,015.0[]016.0,015.0[]016.0,015.0[]016.0,015.0[]006.0,003.0[]014.0,010.0[
]014.0,013.0[]014.0,013.0[]014.0,013.0[]014.0,013.0[]014.0,013.0[]014.0,013.0[]014.0,013.0[]012.0,008.0[
]016.0,014.0[]016.0,014.0[]016.0,014.0[]016.0,014.0[]016.0,014.0[]016.0,014.0[]016.0,014.0[]016.0,014.0[
]019.0,017.0[]019.0,017.0[]019.0,017.0[]019.0,017.0[]018,0,016.0[]110.0,017.0[]019.0,166.0[]017.0,015.0[

 

Step 7: Find the maximum set interval valued fuzzy soft matrix 

The calculation for this step is come from matrix in Step 6 as follows: 
]017.0,015.0[)]017.0,017.0,017.0,017.0,017.0,017.0,017.0,017.0(),015.0,015.0,015.0,015.0,015.0,015.0,015.0,015.0max[( =  





























014.0,003.0
014.0,003.0
021.0,019.0
006.0,003.0
012.0,008.0
016.0,014.0
017.0,015.0

 

Step 8: Finally, we find an optimum fuzzy set according to ]))[](([ ijij SRMm ∧ as: 

          )5{)(])[](([ MUOpt
ijij SRMm =∧  

  ]021.0,019.0[5 =M  

It is clear that 5M represent the best choice of programmer within the universal set. Consequently, the 
human resources department will choose programmer 5 to join the Software Development Organization’s 
team.  

4. CONCLUSION 

This research introduced a novel decision–making approach called the IVFSMmDM. The method was 
designed to address the limitations of existing group decision–making techniques, particularly in contexts 
characterized by uncertainty and imprecise data. By integrating the Lambda–max method, IVFSMmDM 
enables more objective and precise determination of criteria weights, which are crucial for evaluating 
alternatives in decision-making processes. A key contribution of this research is the application of 
IVFSMmDM in a real-world scenario manpower recruitment for a software development organization. The 
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method's efficacy was demonstrated through a detailed numerical example involving the selection of 
programmers. The results identified Programmer 5 as the optimal choice, with a maximum interval value 
of the overall priority vector calculated as (0.019, 0.021). This result highlights the method's robustness and 
practical utility in managing complex decision-making scenarios with multiple criteria and decision-
makers. This outcome not only underscores the robustness of the IVFSMmDM but also supports previous 
studies, such as those by Maji et al. (2002) and Kong et al. (2021), which have shown the effectiveness of 
advanced decision-making frameworks within soft set theory contexts. The findings reinforce the method's 
practical utility for addressing complex decision–making challenges involving multiple criteria and 
decision makers, aligning with the conclusions of prior research that emphasized the necessity of innovative 
approaches in the field. 

This study indicates that IVFSMmDM has potential applications across a range of decision-making 
context where data is uncertain or vague. Its adaptability and flexibility suggest opportunities for further 
development and refinement to extend its use. Future research could explore additional enhancements to 
the IVFSMmDM method, potentially by incorporating new factors or integrating it with other decision-
making techniques to increase its precision and applicability. Advancing these research avenues could help 
IVFSMmDM evolve, offering even greater accuracy and versatility in decision-making processes 
characterized by uncertainty. 
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