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 The COVID-19  pandemic had a significant impact globally. Negative 
impacts include the total number of losses in overall population size and 
economic decline. This study focuses on applying the simple 
Susceptible-Infected-Recovered (SIR) model to analyze COVID-19 
cases in Malaysia for a time span of 100 days, from 1/5/2024 up to 
8/8/2024. The key parts to gain the result can be divided into two which 
are data collection of daily COVID-19 cases in Malaysia from the 
website of Ministry of Health and solving the differential equations 
using R studio. From the SIR Model, the findings provide the estimation 
of transmission rate (𝛽𝛽), recovery rate (𝛾𝛾), and a basic reproduction 
number (𝑅𝑅0), along with the graph of trends of COVID-19 in Malaysia 
for 100 days. From the values gained, this study aims to construct a 
Markov chain transition matrix to explain the disease spread more 
effectively. 
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1. INTRODUCTION 

According to Achmad et al. (2021), COVID-19 is an emerging infectious disease, first found in late 2019, 
with the first patient being diagnosed on 31st December 2019 in Wuhan, China. Since then, it has been 
spreading rapidly across the country and eventually all over the world. The COVID-19 epidemic in 
Malaysia started with a small-sized outbreak of 22 cases in January 2020, mainly from imported cases. The 
first wave was quickly replaced by an even more significant outbreak, primarily secondary to local 
transmission, which led to 651 cases (Salim et al., 2020).  

Salim et al. (2020) reported that there were three epidemic forecasting models used to make predictions 
for COVID-19 cases in Malaysia. The three models are the curve-fitting model with a probability density 
function and skewness effect, the stochastic model, and a system dynamic model. The stochastic process, 
which is modeled using Markov Chain, predicted a peak on May 20 and May 31, 2020, with 630,000 to 
800,000 infections if the Movement Control Order (MCO) measure persists.  

The pandemic has shown the necessity for continuous investigation and intervention to prevent the 
spread of the virus and the management of long-term effects. Hence, this study intends to see the spreading 
of COVID-19 in Malaysia by modeling it using a simple compartmental SIR model, where the parameters 
for the model are estimated from the real data.  
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2. LITERATURE REVIEW 

2.1 Disease spread simulation 

According to Viboud et al. (2021), disease spread simulation is the application of mathematical or 
computational models to simulate and study the spread of infectious diseases in a population. These 
simulations are used to forecast the evolution of a disease in time, to assess the effects of different public 
health interventions, and to inform decision-making processes to control outbreaks in a proper way. 

 A cornerstone in disease spread model is the disease transmission dynamics, the field of research on 
how diseases move from one individual to another individual. Based on the website of CDC (Centers for 
Disease Control and Prevention, 2021) in 2021, disease transmission dynamics includes a consideration of 
factors involved in contact frequency, disease transmission probability, and number of new cases produced 
by one infected person that may occur.  

An important number in the disease transmission dynamic is the basic reproduction number (𝑅𝑅0). It is 
the number that provides us the measure of how many new infections one infected individual can transmit 
to another individual (WHO, 2020). For example, if 𝑅𝑅0 = 2, the minimum transmission by an infected 
individual is two cases per transmissions.  

2.2 Previous study 

Among the contributions in this field in the context of the COVID-19 pandemic, the paper by F. M. 
Omar, M. A. Sohaly, and H. El-Metwally (2024) provides a closed-form expression to estimate the Mean 
First Passage Times (MFPTs). MFPTs are also important in characterizing the time course of basic 
reproduction number (𝑅𝑅0) that describes the mean time for an infected individual to give the virus to the 
susceptible compartment. The use of this formula provides a more accurate estimate of the time for 
transmission events to take place, therefore improving the accuracy of virus spread forecasts. On the other 
hand, the authors also propose a state reduction approach to reduce the calculation of MFPTs, and the 
modelling process is more efficient by choosing a small number of states or steps. This method not only 
simplifies the computation but also makes it possible to perform faster and more realistic simulations. 
Additionally, they investigate whether the system's dynamics change significantly when new stages are 
introduced, such as distinct stages of infection and recovery lead to different relative levels and explain 
how such level changes lead to larger or smaller overall rates of virus transmission. 

 Another study by Wang andMustafa (2023) have introduced an innovative Markov Chain Model 
designed for studying infectious diseases. This model is interesting because of its simplicity and efficiency, 
it can be controlled only by four parameters, even though it runs in an infinite state space. This advancement 
makes the model a versatile tool for analyzing complex disease dynamics without the need for extensive 
computational resources. Its streamlined design allows its use in democratized and usable ways in the 
context of many infectious disease settings, such as pandemic, i.e., COVID-19. 

 Moreover, the authors have performed many simulations methodology to cope with heterogenous 
infection distribution in various areas. By applying this method to six regions with high transmission rates, 
their study effectively analyses how varying regional characteristics influence disease spread. Their 
numerical study, based on a COVID-19 application as a case study, shows that it is possible to replicate the 
transmission dynamics that are characteristic of related infectious diseases using the model. This ability 
illustrates the power of the model to account for the dynamics of real-world disease transmission and its 
potential to improve epidemic prediction and public health plans. 

2.3 Relationship between Markov chain model and SIR model 

In this study, the disease spread model based on the SIR Model is constructed. SIR (Susceptible-
Infected-Recovered) is a mathematical model that explains the population-level patterns of infectious 
diseases (Zenian et al., 2022). In Markov Chain Model, the principle of transition probabilities is applied 
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to the stochastic version of SIR Model. Since transition probabilities are typically represented in a transition 
matrix, let’s set up a transition probability matrix in the context of SIR Model. Firstly, a transition diagram 
of the three states in the SIR Model is formed:  

 

Fig. 1.  The transition diagram of the three states in SIR Model 

In this transition diagram, both the birth rate and death rate are assumed to be zero. The phase of 
moving from susceptible to infected state is represented by 𝛽𝛽𝛽𝛽𝛽𝛽 where 𝛽𝛽 is the transmission rate, 𝐼𝐼 is the 
number of individuals currently in the infected state and 𝑆𝑆 is the number of individuals currently in 
susceptible state. The term 𝑆𝑆𝑆𝑆 represents total number of potential interactions between the individuals in 
susceptible state and infected state. If 𝛽𝛽𝛽𝛽𝛽𝛽 increases, the number of new infections in unit times also 
increases (Morris  and Bjørnstad (2020)). 

 Logically, when the transmission rate is high, the infection is spreading faster, even with limited 
interactions between individuals in susceptible state and recovered state. On the other hand, observing the 
transition from infected state to recovered state, the transition is represented as 𝛾𝛾𝛾𝛾 where 𝛾𝛾 is the recovery 
rate that is proportional to the number of infected individuals 𝐼𝐼. It is crucial to understand that when the 
recovery rate is high, the rate of change from infective state to recovered state is high or the number of 
infective states moving to recovered state is bigger. The spread of the disease, 𝛽𝛽𝛽𝛽𝛽𝛽 is non-linear since it 
depends on both state susceptible and infected, unlike the recovery phase, 𝛾𝛾𝛾𝛾 that is linear since it depends 
only on the infective phase (Bjørnstad, 2022). The balance between both transmission rate and recovery 
rate determines the basic reproduction number of a disease, 𝑅𝑅0: 

                                                                                         𝑅𝑅0 =
𝛽𝛽
𝛾𝛾

                                                                                   (1) 

 Second step to construct a transition probability matrix for the SIR Model is listing all the probabilities 
in event. The key is to calculate the probability of moving from each state to another state. Since there are 
three states of “Susceptible”, “Infected”, and “Recovered”, the matrix is supposed to be a 3 × 3 matrix. In 
Markov Chain Model, 𝑃𝑃𝑃𝑃𝑃𝑃 is known as the probability of moving or transitioning from initial state 𝑖𝑖 to final 
state 𝑗𝑗. Therefore, listing the 9 probabilities of changing from the three states in SIR Model:  

(i)  𝑃𝑃𝑆𝑆𝑆𝑆: the probability of susceptible individuals remains susceptible. 

(ii)  𝑃𝑃𝑆𝑆𝑆𝑆: the probability of susceptible individuals becomes infected. 

(iii)  𝑃𝑃𝑆𝑆𝑆𝑆: the probability of susceptible individuals to recovered.  

(iv)  𝑃𝑃𝐼𝐼𝐼𝐼: the probability of infected individual becomes susceptible.  

(v)  𝑃𝑃𝐼𝐼𝐼𝐼: the probability of infected individuals stays infectious.   

(vi)  𝑃𝑃𝐼𝐼𝐼𝐼: the probability of infected individuals to recovered.   

(vii)  𝑃𝑃𝑅𝑅𝑅𝑅: the probability of recovered individuals become susceptible. 

(viii) 𝑃𝑃𝑅𝑅𝑅𝑅: the probability of recovered individuals become infectious.  

(ix)  𝑃𝑃𝑅𝑅𝑅𝑅: the probability of recovered individuals remains recovered. 

 

Susceptible Infected Recovered 𝛾𝛾𝛾𝛾 𝛽𝛽𝛽𝛽𝛽𝛽 
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Arranging these 9 probabilities into a matrix 𝑃𝑃: 

                                                              𝑃𝑃 = �
𝑃𝑃𝑆𝑆𝑆𝑆 𝑃𝑃𝑆𝑆𝑆𝑆 𝑃𝑃𝑆𝑆𝑆𝑆
𝑃𝑃𝐼𝐼𝐼𝐼 𝑃𝑃𝐼𝐼𝐼𝐼 𝑃𝑃𝐼𝐼𝐼𝐼
𝑃𝑃𝑅𝑅𝑅𝑅 𝑃𝑃𝑅𝑅𝑅𝑅 𝑃𝑃𝑅𝑅𝑅𝑅

�                                                                      

3. METHODOLOGY 

3.1 Research design 

This study implement the use of the SIR Model, which is originally considered as a deterministic 
model. This study is also non-experimental since existing data is used to model and predict outcomes of 
COVID-19 spread in Malaysia. According to Tang et al. (2021), in the SIR Model, the rate of change of 
the three states of “Susceptible”, “Infected”, and “Recovered” are depending on the factors of time. 
Therefore, in this research, the independent variable is time(t) in days. Meanwhile, the dependent variables 
are S(t), I(t) and R(t), which the number of susceptible, infected, and recovered individuals at time t. 

3.2 Data collection 

The real-world data of COVID-19 in Malaysia is gathered from the official website of Info Centre by 
Ministry of Health (MOH). The data provide daily case reports with columns on region, number of people 
infected per day, number of people recovered per day, and number of deaths per day. The data has a time 
span of 100 days, from 1/5/2024 until 8/8/2024. The data is arranged according to the three states in SIR 
Model with number of infected individuals and number of recovered individuals per day. According to 
D´Ebarre (2019), to determine the number of susceptible per day, the number of infected individuals and 
recovered individuals is subtracted from the total number of population (N). 

3.3 Model building 

Three different states in SIR Model: 

S(t): Number of susceptible individuals at time t, 

I(t): Number of infected individuals at time t, 

R(t): Number of recovered individuals at time t. 

Let the number of populations be 𝑁𝑁, therefore: 

                                           𝑁𝑁 = 𝑆𝑆(𝑡𝑡) + 𝐼𝐼(𝑡𝑡) + 𝑅𝑅 (𝑡𝑡).                                                           (2) 

The rate of changes of each state can be written as three different equations: 

             𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −  𝛽𝛽𝛽𝛽(𝑡𝑡)𝐼𝐼(𝑡𝑡)
𝑁𝑁

 ,                                                               (3) 

                𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=  𝛽𝛽𝛽𝛽(𝑡𝑡)𝐼𝐼(𝑡𝑡) 
𝑁𝑁

− 𝛾𝛾𝛾𝛾(𝑡𝑡) ,                                                  (4) 

                𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=  𝛾𝛾𝛾𝛾(𝑡𝑡),                                                                      (5) 

where 𝛽𝛽 is transmission rate and 𝛾𝛾 is recovery rate. 
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3.4 Transition probability matrix 

The agent-based modelling of the SIR Model will be explored. Agent-based modelling can be defined 
as computational simulations that attempt to model the behaviour of the individual within the environment 
(Singh, 2024). Firstly, computing the fractions of the three populations in susceptible, infected, and 
recovered as: 

                                                       𝑠𝑠(𝑡𝑡) =  
𝑆𝑆(𝑡𝑡)
𝑁𝑁

                                                                       (6) 

                                                      𝑖𝑖(𝑡𝑡) =  
𝐼𝐼(𝑡𝑡)
𝑁𝑁

                                                                        (7) 

                                                     𝑟𝑟(𝑡𝑡) =  
𝑅𝑅(𝑡𝑡)
𝑁𝑁

                                                                       (8) 

Then, 

 𝑠𝑠(𝑡𝑡) + 𝑖𝑖(𝑡𝑡) + 𝑟𝑟(𝑡𝑡) = 1.                                                        (9) 

Therefore, the rate of changes of each three states would become: 

       𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= − 𝛽𝛽𝛽𝛽𝛽𝛽,              𝑠𝑠(0) =  𝑆𝑆(0)
𝑁𝑁

                                              (10) 

  𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=  𝛽𝛽𝛽𝛽𝛽𝛽 − 𝛾𝛾𝛾𝛾,         𝑖𝑖(0) =  𝐼𝐼(0)
𝑁𝑁

                                              (11) 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=  𝛾𝛾𝛾𝛾,                     𝑟𝑟(0) =  𝑅𝑅(0)
𝑁𝑁

                                              (12) 

To implement an agent-based simulation, assume the non-linear term is linear. Therefore, the rate of 
changes can be written in matrix such as: 

                                                     𝑑𝑑
𝑑𝑑𝑑𝑑
�  

 𝑠𝑠  
 𝑖𝑖  
  𝑟𝑟  

�  = 𝐴𝐴 �
  𝑠𝑠  
 𝑖𝑖
  𝑟𝑟

 �                                                             (13) 

                                              𝐴𝐴 =  �
−𝛽𝛽i 0 0
𝛽𝛽i −𝛾𝛾 0
0 𝛾𝛾 0

�                                                             (14) 

Matrix A is the rate of change for a continuous time Markov Chain. Meanwhile, the matrix P is a simplified 
version of the transition probability matrix for SIR Model or the discrete-time Markov Chain. To prove the 
relationship between rate matrix A and transition matrix P, an exponential relationship between the two 
matrices is built, since matrix A is continuous to matrix P: 

𝑃𝑃 = 𝑒𝑒𝐴𝐴 ∆𝑡𝑡                                                                  (15) 

For small ∆𝑡𝑡, the exponential can be approximated by the first-order Taylor expansion: 

𝑒𝑒𝐴𝐴 ∆𝑡𝑡 = 𝐼𝐼 + 𝐴𝐴 ∆𝑡𝑡                                                           (16) 

Where 𝐼𝐼 = identity matrix and 𝐴𝐴∆𝑡𝑡 = scales of rate matrix A by the time step ∆𝑡𝑡. Solving the first-order 
Taylor expansion:  

𝐴𝐴∆𝑡𝑡  = �
−𝛽𝛽i∆𝑡𝑡 0 0
𝛽𝛽i∆𝑡𝑡 −𝛾𝛾∆𝑡𝑡 0

0 𝛾𝛾∆𝑡𝑡 0
�                                                 (17) 
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𝑃𝑃 =  �
1 0 0
0 1 0
0 0 1

�  +  �
−𝛽𝛽i∆𝑡𝑡 0 0
𝛽𝛽i∆𝑡𝑡 −𝛾𝛾∆𝑡𝑡 0

0 𝛾𝛾∆𝑡𝑡 0
�                                    (18) 

 

𝑃𝑃 =  �
1 − 𝛽𝛽i∆𝑡𝑡 0 0
𝛽𝛽i∆𝑡𝑡 1 − 𝛾𝛾∆𝑡𝑡 0

0 𝛾𝛾∆𝑡𝑡 1
�                                                (19)  

 

Next, it is important to understand that in the matrix A, it is an off-diagonal entries, which means the 
matrix represents the flows into a state. In matrix P, each rows represents the probabilities of leaving the 
state. Therefore, the diagonal term will remain the same, that is 𝑃𝑃𝑆𝑆𝑆𝑆 = 1 − 𝛽𝛽i∆𝑡𝑡 ,𝑃𝑃𝐼𝐼𝐼𝐼 = 1 − 𝛾𝛾∆𝑡𝑡, and 𝑃𝑃𝑅𝑅𝑅𝑅 = 1. 
On the other hand, the off-diagonal terms will switch position with its opposite diagonal in the matrix, 
𝑃𝑃𝐼𝐼𝐼𝐼 = 𝛽𝛽i∆𝑡𝑡 will move to 𝑃𝑃𝑆𝑆𝑆𝑆  position and 𝑃𝑃𝑅𝑅𝑅𝑅 = 𝛾𝛾∆𝑡𝑡 will move to the position of 𝑃𝑃𝐼𝐼𝐼𝐼 . Hence, the transition 
probability matrix P is now: 

𝑃𝑃 =  �
1 − 𝛽𝛽i∆𝑡𝑡 𝛽𝛽i∆𝑡𝑡 0

0 1 − 𝛾𝛾∆𝑡𝑡 𝛾𝛾∆𝑡𝑡
0 0 1

�                                           (20) 

4. RESULT AND DISCUSSION  

4.1 Estimation of transmission rate(𝜷𝜷) and recovery rate(𝜸𝜸) 

For this section, to obtain the estimation of transmission rate(β) and recovery rate(γ), R-programming 
language has been used (see Appendix 1). The coding is attached as in the Appendix 1.  The results show 
the value of the transmission rate,𝛽𝛽 =  0.006827, recovery rate, 𝛾𝛾 = 0.005924, and basic reproduction 
number ,𝑅𝑅0 = 1.15242. The value of transmission rate and recovery rate are closed to each other, 
indicating that during the 100 days, the rate of individuals getting infected from COVID-19 in Malaysia is 
close to the rate of its recovery. In short, the spread of the virus is in stable state since the infection and 
recovery rate operate at a similar pace. The basic reproduction number, 𝑅𝑅0 = 1.15242, which is slightly 
above 1, which it indicates that the COVID-19 disease is still spreading in Malaysia but a lower rate. 
However, intervention steps still need to be taken since one infected individual can infect the virus over 
one other person.  

According to Zenian et al. (2022), on the research of ‘the SIR Model for COVID-19 in Malaysia’ from 
January 2020 until June 2021, the values of transmission rate and recovery rate obtained were 𝛽𝛽 = 0.0162 
and 𝛾𝛾 = 0.0069 with a basic reproduction number, 𝑅𝑅0 = 2.35. This occur since the cases of COVID-19 in 
Malaysia during 2020 to 2021 were still high and there was still limited knowledge about the virus and still 
fewer prevention strategies announced by the government.  
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Fig. 2. The SIR model graph for 𝑅𝑅0 = 1.15242 

Fig. 2 illustrates the SIR Model on the COVID-19 pandemic in Malaysia from 1/5/2024 to 8/8/2024. 
The blue line represents the susceptible population of the 100 days period. Initially, the entire population is 
at the susceptible state except for those who are already infected before the first day, thus the curve begins 
at the maximum value of N = 31 400 000 minus the initial number of infected individuals. As the epidemic 
progress, the number of individuals in the susceptible state decreases gradually since some will move to the 
infected state. However, it will never reach zero since some individuals remain unexposed to the disease. 

The red line represents the curve for the number of infected individuals, it is observed that the curve 
rises as the number of susceptible individuals decreases, indicating that the virus is spreading when both 
susceptible and infected individuals encounter each other. The number of infections proceed to increase 
until it reaches a peak value when it is about 50 days of the epidemic, this could happen due to the 
celebration of Eid al-Adha since the infection raises during the middle of June until early of July. After 
reaching the peak, the number of infected individuals starts to decline since more individuals are moving 
to recovered state. The green line, that is the curve for number of recovered individuals begins to increase 
slowly until it nearly approaches 𝑁𝑁.  

4.2 Transition probability Matrix   

For each time step, transition probability matrix P is: 

                                     𝑃𝑃 (𝑡𝑡𝑖𝑖+1) = �
1 − 𝛽𝛽

𝐼𝐼(𝑡𝑡𝑖𝑖)
𝑁𝑁

𝛽𝛽
𝐼𝐼(𝑡𝑡𝑖𝑖)
𝑁𝑁

0
0 1 − 𝛾𝛾 𝛾𝛾
0 0 1

�                                                 

𝑃𝑃 (𝑡𝑡𝑖𝑖+1) = �
1 − 0.006827

𝐼𝐼(𝑡𝑡𝑖𝑖)
34 100 000

0.006827
𝐼𝐼(𝑡𝑡𝑖𝑖)

34 100 000
0

0 0.994076 0.005924
0 0 1

�               

 

Using the computed values of 𝐼𝐼(𝑡𝑡𝑖𝑖) from the simulation, the matrix P can be solved by finding the 
maximum value of the transition probability of moving from susceptible state to infected state, 𝑃𝑃𝑆𝑆𝑆𝑆 .The 
simulation result shows that the value of maximum transition probability from susceptible state to infected 
state, 𝑃𝑃𝑆𝑆𝑆𝑆 = 0.006825. Therefore, the final solution of matrix P is: 
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                𝑃𝑃 (𝑡𝑡𝑖𝑖+1) = �
0.993175 0.006825 0

0 0.994076 0.005924
0 0 1

�                      

 

This matrix P provides the probabilities of the various transitions between states S, I, and R for each. 
The first row is transitions from the susceptible state, with the probability of remaining susceptible is 
0.993175, which is remarkably high because most of the time an individual is not exposed to the infection 
due to the low fraction of infected individuals, . The probability of flow from susceptible to infected 
is 0.006825. The value is tiny since at this stage, the exposure to infected individuals is limited. The 
probability of moving from susceptible state to infected state is near to the transmission rate, 𝛽𝛽 = 0.006827 
since for small time steps, the probability of infection is proportional to the transmission rate. The likelihood 
of the infection is determined by the contact between susceptible and infected individuals, therefore, the 
higher the probability of transition from susceptible to infected state, the higher the transmission rate, 𝛽𝛽. 
The second row gives a probability of remaining infected that is moderately high at 0.994076 with most 
infected individuals remain in this state for more than one time step. The probability of transitioning to the 
recovered state is 0.005924, which directly reflects the recovery rate, 𝛾𝛾 = 0.005924. The third row is the 
transitions from the recovered state. The model assumes permanent immunity since the individuals that 
reach the recovered state remain there forever with probability 1, and there are no transitions back to either 
the susceptible or infected states as denoted by the zeros in the first and second column. 

5. CONCLUSION 

The findings indicate that the spread of COVID-19 was relatively kept under control during 2024, since 
lower rate of basic reproduction number implies lower transmission of the virus in the country. To minimize 
the basic reproduction number 𝑅𝑅0, it is a must to minimize the value of 𝛽𝛽 and S while maximize the value 
of γ. 

In this study, the Markov Chain Model is employed to estimate the transition probabilities between the 
epidemiological states of susceptible, infected, and recovered individuals. The estimated probability of 
transitioning from the susceptible to the infected state is 0.006825, indicating a relatively low likelihood of 
new infections. Conversely, the probability of transitioning from the infected to the recovered state is 
0.005924, which, while still low, is comparatively higher than the infection rate. These findings suggest a 
downward trend in the number of active COVID-19 cases in Malaysia. 

The findings suggest that in 2024, Malaysia had approached the stable disease control of COVID-19. 
This is due to the intervention strategy practices such as MCO, the use of my Sejahtera app, and massive 
vaccination program. Although progress has been made, continued awareness is necessary, as the virus still 
poses a risk of community transmission. 
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APPENDIX 1:  ESTIMATION OF TRANSMISSION RATE(𝜷𝜷) AND RECOVERY RATE(𝜸𝜸) 
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