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 Flooding remains one of the most significant hydrological hazards in 
Malaysia, particularly within the Johor River Basin. This study conducts 
a Flood Frequency Analysis (FFA) using the L-Moment method to 
identify the most suitable probability distribution for modelling annual 
maximum streamflow at the Kahang River station. A 45-year dataset 
(1978-2022) was analyzed using three candidate distributions: 
Generalized Logistic (GLO), Generalized Pareto (GPA), and Pearson 
Type-III (PE3). The L-Moment Ratio Diagram (LMRD), alongside 
statistical performance metrics such as MAE, RMSE, MAPE, RMSPE, R2 
and Euclidean Distance was employed to evaluate model accuracy. 
Results reveal that the GPA distribution provides the best fit as it 
provides smallest value of MAE, MAPE, RMSPE and Euclidean 
Distance, demonstrating superior accuracy in predicting extreme flood 
events, particularly for high return periods. The study offers critical 
insights for flood risk assessment, infrastructure planning, and early 
warning system development in the region. Lastly, it provided 
researchers with flood analysis methods using L-moments and extreme 
value distributions. 
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1. INTRODUCTION 

Flood is one of the most destructive natural disasters, with severe socio-economic impacts globally. In 
Malaysia, the Johor River basin is highly flood-prone due to its tropical climate, featuring heavy rainfall 
during the northeast monsoon (November-February). High temperatures (24º-32ºC) and year-round 
humidity further increase flood risks, making Johor particularly vulnureable to extreme weather. Over past 
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20 years, major flood such as those in 2006-2007, 2011 and 202 have caused widespread displacement, 
damage to infrastructure and livelihood disruptions (Ahmad et al., 2020) 

To assess flood risks, hydrologists use various Flood Frequency Analysis (FFA) models, the key 
method for studying extreme river flows and predicting recurrence intervals (Hamed & Rao, 2019; Jan et 
al., 2016). FFA methods evolved to incorporate historical data, censored peaks, and outlier tests, 
significantly improving flood quantile estimation (Stedinger, 1993; Hamed & Rao, 2019; Ali & Rahman, 
2022). Early foundational work (Fakhru’l-Razi et al., 2020) by Todd (1957) and Linsley (1986) established 
streamflow analysis principles, while later Moughamian et al. (1987) advanced the distribution methods. 

Advanced statistical techniques, such as L-moments presented an efficient alternative for the estimation 
of extreme hydrologic data (Badyalina et al., 2021). The reason to utilized the L-Moment in this study is 
because L-moments are less sensitive to outliers and produce better parameter estimation of probability 
distributions like the Generalized Logistic (GLO), Generalized Pareto (GPA) and Pearson Type-III (PE3) 
distributions (Marsani et al., 2022; Hassim et al., 2022). By applying these methods to historical records of 
floods in the Johor River, it was then feasible to enhance the description of the frequency and size of flood 
events and can refine the precision of flood risk predictions. 

Studies in Johor rivers, such as the Sayong River, Segamat River, and Johor’s Region III confirm 
GLO’s superior fit for peak flow data (Zamani et al., 2024; Badyalina et al., 2021; Che Ilias et al., 2021). 
Meanwhile, GPA outperformed other distributions in the Segamat River (Romali & Yusop, 2017) and 
matched regional L-moments in flood-prone areas like Northern Iran (Adhami, 2024). The Pearson Type-
III (P3) distribution handles asymmetric data through shape, scale, and location parameters, offering 
versatility for skewed flood data (Zhang et al., 2012). Recent studies highlight its superiority in the Johor 
River Basin (Jafry et al., 2023; Badyalina et al., 2022) and moderate-skew environments (Turhan, 2022), 
even outperforming GLO and GPA in some cases (Valentini et al., 2024). Though less common in Johor, 
PE3 shows promise for regional adaptation. 

Hence, this study aims to improve flood risk assessment for Johor River by applying L-Moments and 
extreme value distributions (Generalized Pareto (GPA), Generalized Logistic (GLO) and Pearson Type-III  
(PE3)) to analyse historical flood data from Sungai Kahang station. The advantages of using each 
distribution are for GLO, it has satisfactory estimation of extreme flood events as it is able to capture tail 
behaviour well (Hamed & Rao, 2019). GPA is effective for heavy-tailed data meanwhile PE3 distribution 
can augment the data input from positively skewed data to negative skewed data depending on the location 
parameter, the PE3 distribution has great utility across many real-world scenarios. 

The research will identify the most accurate distribution for modelling flood frequency, estimate return 
periods for extreme events, and provide actionable insights for flood management agencies like Department 
of Irrigation and Drainage Malaysia (DIDM). While the findings will enhance early warning systems and 
infrastructure planning, limitations include time constraints restricting long-term climate analysis and data 
accessibility challenges affecting prediction precision. The methodology used in this research is presented 
in methodology section, covering the study area description, probability distributions, and evaluation 
criteria for distributions performance. 

2. METHODOLOGY 

2.1 Study area 

This study analyzes flood patterns and extreme streamflow events in Johor, Malaysia, using historical 
data f This study analyzes flood patterns and extreme streamflow events in Johor, Malaysia, using historical 
data from a river station which is Kahang River (Station ID 2235401, coordinates 2°17'42"N 103°34'39"E). 
The research utilizes a 45-year dataset from 1978 until 2022 of annual maximum streamflow (in m³/s) 
obtained from the Department of Irrigation and Drainage Malaysia (DIDM). This study focuses on annual 
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streamflow data, excluding weekly and monthly measurements from the analysis. These long-term 
discharge records, collected from the gauging station shown in Fig. 1., hydrological stations in Johor 
including Kahang River. 

 

Fig. 1. Location of Kahang River 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Location of Kahang River 

Source: Department of Irrigation and Drainage Malaysia 

2.2 Gringorten plotting position 

Gringorten's formula is commonly used to plot a set of ordered observations in a simpler format. 
According to Gringorten (1963), the Gringorten plotting position is used to find the optimal plotting 
position. This method is especially helpful in proving the efficiency of the plotting position, even when the 
sample size is less than 20. The Gringorten plotting position is calculated using the following formula: 

where 𝑃𝑃𝑖𝑖  is the plotting position for the 𝑖𝑖𝑡𝑡ℎ value, 𝑖𝑖 is the rank of the value in the ordered dataset, and 𝑛𝑛 is 
the sample size of the data. 

2.3 L-Moments 

L-moments (LMO), which are derived from probability-weighted moments (PWM), are commonly 
employed in hydrology for analysing extreme events like floods and droughts. They outperform traditional 
statistical methods by being less affected by outliers and working well with small datasets (Hamed & Rao, 
2019). L-moments provide reliable estimates of distribution parameters, improving flood frequency 
analysis and water management decisions. Hosking (1990) developed the PWM approach that forms the 
basis for L-moment calculations. Assume  𝑥𝑥1:𝑛𝑛  ≤  𝑥𝑥2:𝑛𝑛  ≤ ⋯  ≤  𝑥𝑥𝑛𝑛:𝑛𝑛  represented the data in specific order 
with a sample size of 𝑛𝑛. Landwehr (1979) outlined the L-Moment method’s unbiased sample estimator by 
the following formula: 
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The first four elements of an unbiased sample estimator are listed below: 

Meanwhile, the first four sample estimates for L-Moments listed as: 

 
Hence, the samples of L-Moment ratio are addressed as follows: 

 
L-moments summarize streamflow data, where 𝑙𝑙1 (L-location) represents the central value, 𝑙𝑙2 (L-scale) 

measures data variability (higher values indicate greater spread), and 𝑡𝑡2 (L-CV) quantifies relative 
variation. L-skewness (𝑡𝑡3) and L-kurtosis (𝑡𝑡4) describe tail and peak behavior. Table 1 evaluates three 
distributions (GLO, GPA, PE3) for flood frequency analysis, showing their formulas (𝑥𝑥(𝐹𝐹) = quantile at 
non-exceedance probability 𝐹𝐹 =  1 − 1/𝑇𝑇, where T = return period). Each distribution is defined by 
location (ξ), scale (α), and shape (k) parameters, which determine its fit to the data.  
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Table 1. Estimated distribution parameters using the L-Moments technique 

Source: Hamed and Rao (2019) 

2.4 Accuracy Measure Performance 

In this section, five accuracy performance measures are used which are Mean Absolute Error (𝑀𝑀𝑀𝑀𝑀𝑀), 
Mean Absolute Percentage Error (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀), Root Mean Square Error (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅), Root Mean Square 
Percentage Error (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) and Coefficient of Determination (𝑅𝑅2). 𝑀𝑀𝑀𝑀𝑀𝑀 is the mean of the absolute 
magnitude of differences between predicted and actual values irrespective of direction 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 generalizes 
this by quantifying errors in percentage terms, thus it can be used to compare across different magnitudes 
of floods. 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 conveys bigger errors by squaring the differences before computing the mean, thus it 
proves useful in identifying poorer predictions of the larger flood events. Lastly, 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 is a percentage 
version of 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅, but is better suited to evaluate predictions that vary greatly in magnitude, such as those 
for a number of floods return periods. The 𝑅𝑅2 determine how well the theoretical estimated value derived 
from distribution fits the actual data. The smallest error measure and larger value of 𝑅𝑅2 implies that the data 
perform better for the model. Hence, the equation of each accuracy performance is presented in Eq. (14) 
through Eq. (18). 
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where n is the number of observations, 𝐹𝐹(𝑦𝑦𝑖𝑖) is the observed value, 𝐹𝐹(𝑦𝑦�𝑖𝑖) represented the predicted value, 
𝑦̄𝑦 is the mean of the observed value. The accuracy measurements such as 𝑀𝑀𝑀𝑀𝑀𝑀,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 
quantify the differences between the actual observation of annual peak flow and predicted estimates of peak 
flow from each distribution. 

2.5 L-Moment ratio diagram 

Hosking and Wallis (1997) introduced the L-Moment Ratio Diagram (LMRD) as a tool for calculating 
an accurate distribution of a catchment's streamflow series. Regarding a three-parameter distribution, the 
LMRD depicts the theoretical relationship between 𝑡𝑡3 (skewness) and 𝑡𝑡4 (kurtosis), as given in Eq. 12 and 
Eq. 13 respectively. The value of 𝑡𝑡4 is calculated based on the Kahang River streamflow data and plot 
LMRD in order to recognize which distribution line lies closely. 

The coefficients of Ak where k=0, 1, 2, …, 8 for the GLO, GPA and PE3 respectively are from the L-
Moment. To measure the distance between observed and predicted values for each distribution, Euclidean 
Distance can be used. This is to strengthen the graphical evidence on which distribution is the best. Hence, 
the formula for Euclidean Distance (Krislock & Wolkowicz, 2012) is expressed by: 

where qi and pi is the Euclidean vectors, starting from the origin of the space (initial point). For Euclidean 
distance, the smallest distance from the baseline indicates better model performance. 
 
 
 
 

 
( ) ( )

1

1 ˆ
n

i i
i

MAE F y F y
n =

= −∑  (14) 

 ( ) ( )
( )1

ˆ100 n
i i

i i

F y F y
MAPE

n F y=

−
= ∑  (15) 

 
( ) ( )( )

2

1
ˆn

i ii
F y F y

RMSE
n

=
−

= ∑  (16) 

 ( ) ( )
( )

2

1

ˆ1 100
n

i i

i i

F y F y
RMSPE

n F y=

 −
= ×  

 
∑  (17) 

 ( ) ( )( )
( ) ( )( ) ( ) ( )( )

2

2 1
2 2

1 1

ˆ

ˆ ˆ

n
i ii

n n
i i i ii i

F y F y
R

F y F y F y F y
=

= =

−
=

− + −

∑
∑ ∑

 (18) 

 2 3 4 5 6
4 0 1 3 2 3 3 3 4 3 5 3 6 3

7 8
7 3 8 3

( ) ( ) ( ) ( ) ( )
( ) ( )

t A At A t A t A t A t A t
A t A t

= + + + + + +

+ +
 (19) 

 

( ) ( )2

1
,

n

i i
i

d p q q p
=

= −∑  (20) 

https://doi.org/10.24191/jcrinn.v10i2.527
https://doi.org/10.24191/jcrinn.v10i2.527


150                                                        Othman et al. / Journal of Computing Research and Innovation (2025) Vol. 10, No. 2 

https://doi.org/10.24191/jcrinn.v10i2.527
 
 ©Authors, 2025 

3. RESULT AND DISCUSSION 

Maximum streamflow also closely related with flooding engineering, flood management measurement 
development and flood system facilities drainage system. Table 1 summarized the descriptive statistics of 
Kahang River site’s annual peak flow data from 1978 until 2022. It exhibits a mean peak flow of 280.41, 
higher than its median (193.95), indicating a right-skewed distribution with substantial variability. This 
large spread between the mean and median, coupled with a high standard deviation (262.633) with min 
(54.8) and max (1284.8), confirms the presence of extreme flow events in the dataset. 

Table 2. Descriptive Statististics for Annual Streamflow of Kahang River 

The peak flow data for the Kahang River has a skewness of 2.0, suggesting that the data is skewed to 
the right with more frequent lower and occasional high peaks. The positive value of kurtosis suggests a 
leptokurtic (Kurtosis > 3.0), indicate that a higher likelihood of extreme flow events. Therefore, the results 
confirms that the peak flow data does not follow normal distribution but instead has heavy tail. To better 
capture this behavior, the study uses three non-normal probability distributions which are Generalized 
Logistic (GLO), Generalized Pareto (GPA) and Pearson Type-III (PE3) to model the annual maximum 
flows in Johor. Their parameters were estimated by applying the L-Moment, with the results listed in Table 
3. To visualize the observed annual peak flow data, the Gringorton Plotting Position equation was used, as 
illustrated in Fig. 2. 

 

Fig. 2. CDF plot for the Kahang River annual peak flow and the candidate distributions 

Fig. 2 shows all three distributions which are PE3, GLO and GPA which closely follow the observed 
data in the lower and central parts of the distribution, accurately capturing the general pattern of peak flows. 
However, in the upper tail region, where high discharge values are critical for flood risk assessments, there 
is a visible divergence among the models. While PE3 shows a slightly higher estimation, GPA tends to 
follow the observed data more consistently than GLO as the discharge increases. This suggests that GPA 
may be better at representing extreme events in this case, which is vital information when considering flood 
risk management and infrastructure design. 
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Table 3. Estimated distribution parameters using the L-Moment technique 

Table 3 displays the the estimated parameters for GLO, GPA, and PE3 distributions by employing the 
L-Moment technique. The GLO distribution has a central tendency (ξ) of 200.5983, the lowest variability 
(α) at 91.6763, and a negative skewness (k), indicating left-skewed data with more frequent low flood 
values. The GPA distribution has a much lower central tendency (ξ = 53.2113), higher variability (α = 
184.4169), and mild left-skewness (k = -0.1883). In contrast, the PE3 distribution has the highest central 
tendency (ξ = 280.4122) and variability (α = 268.5254), with positive skewness (k = 2.5539), indicating 
right-skewed data and a higher likelihood of extreme flood magnitudes compared to GLO and GPA (Hamed 
& Rao, 2019). 

Table 4. Performance measurement for candidate distributions 
 
 
 

 

 
Table 4 represent the performance of GLO, GPA and PE3 distributions using various metrics. The 

GPA distribution has the lowest 𝑀𝑀𝑀𝑀𝑀𝑀 (23.8913) and 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (0.0803), indicating the most accurate 
predictions, while PE3 has the smallest 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (39.0842), showing better handling of large errors. GPA 
also leads in 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (0.1005), outperforming GLO (0.3382) and PE3 (0.1335). However, PE3 has the 
highest 𝑅𝑅² (0.9756), suggesting it explains slightly more variance in flood data than GPA (0.9739) and 
GLO (0.9509). Overall, GPA excels in accuracy, while PE3 performs best in minimizing large errors and 
explaining variability. 

 

Fig. 3. L-moment ratio diagram 

Fig. 3 displays the L-Moment Ratio Diagram (LMRD), comparing observed flood data which are 
plotted as a point with L-Skewness and L-Kurtosis = 0.2689 against theoretical curves of GLO, GPA and 
PE3 distributions. The observed point lies closest to the GPA curve, suggesting it may be the best fit, while 

Distributions Parameters 
𝜉𝜉 𝛼𝛼� 𝑘𝑘� 

GLO 200.5983432 91.6763304 -0.4226313 
GPA 53.2113263 184.416994 -0.1883087 
PE3 280.412222 268.525419 2.553943 

 

Distribution GLO GPA PE3 
MAE  29.23121014 23.89130881 25.91029352 
MAPE 0.102461202 0.080253432 0.110348838 
RMSE 53.52337859 40.20421989 39.08422233 
RMSPE 0.33820537 0.100496606 0.133524466 
R2 0.950932826 0.97390899 0.975573279 
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GLO and PE3 show greater deviation. To objectively evaluate fit, the Euclidean distance measures how 
closely each distribution's theoretical values match the observed data, providing a quantitative goodness-
of-fit comparison between the three distributions.  
 
Table 5. Euclidean distance for each distribution 

 
 
 
 
 

Table 5 presents the Euclidean distance results comparing the fit of GLO, GPA, and PE3 distributions 
to the observed flood data. The GPA distribution demonstrates the strongest alignment with the smallest 
distance (0.0287), confirming it as the most accurate model for this dataset. The GLO distribution, while 
reasonable with a distance of 0.0448, falls short of GPA’s precision. In contrast, the PE3 distribution shows 
the poorest fit (0.0666), indicating it is the least suitable option among the three. These results clearly 
prioritize GPA as the optimal choice for modelling flood events at this location, balancing theoretical 
suitability with empirical performance. 
 
Table 6. Rank score for candidate distributions 

 
 
 
 

 

 

 

Table 6 ranks the candidate distributions (GLO, GPA, PE3) using a scoring system. For each test and 
measure, the best distribution gets 3 points, the worst gets 1, and the middle performer gets 2. The scores 
are totaled and the distribution that hold the maximum overall score is chosen as the most fit, showing the 
most reliable performance across all evaluations. The GPA distribution emerges as the best choice for flood 
frequency modeling in Johor's river systems. It excels in accuracy measures (𝑀𝑀𝑀𝑀𝑀𝑀,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝑅𝑅²) 
and has the smallest Euclidean Distance. With the highest total rank score in Table 6, GPA outperforms 
GLO and PE3, which showed weaker results. This consistent superiority across all tests confirms GPA as 
the most reliable option for flood risk assessment in the Johor River. 

Table 7. Estimated flood discharge for the Johor River site 

 
Table 7 gives the return period estimate for each distribution. From the table above, the flood discharge 

estimates from the GPA distribution increase with longer return periods (2, 10, 50 and 100 years). For 2 
years (𝑝𝑝 = 0.50), it's 189.757 m³/s, rising to 584.790 m³/s (10 years, 𝑝𝑝 = 0.90), 1119.669 m³/s (50 years, 𝑝𝑝 
= 0.98), and reaching 1404.908 m³/s for 100-year events (𝑝𝑝 = 0.99). This trend demonstrates GPA's 
effectiveness in modeling higher flood magnitudes for rare, extreme event. 

 

Distribution Euclidean Distance 
GLO 0.04480754 
GPA 0.028652209 
PE3 0.0666223 

 

Distribution GLO GPA PE3 
MAE  1 3 2 
MAPE 2 3 1 
RMSE 1 2 3 
RMSPE 1 3 2 
R2 1 2 3 
Euclidean Distance 2 3 1 
Total Score 11 20 14 

 
 
 
 
 

Return Periods 
(Years) 

Probability 
(p) 

Estimated Flood Discharges (m3/s) 
GLO GPA PE3 

2 0.50 200.5983 189.757 182.494 
10 0.90 532.7005 584.7902 614.3538 
50 0.98 1107.315 1119.669 1102.259 
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4. CONCLUSION 

The FFA is a widely recognized hydrologic engineering approach that has gained significant interest among 
researchers. This study focuses on identifying the most fitted probability distribution for the modelling of 
the annual peak flow data at a Kahang river site in Johor, Malaysia using the L-moment method for 
parameter estimation, L-moment ratio (LMR) analysis, and numerical performance criteria. The analysis 
relied on annual maximum flow data from the Kahang River’s historical records. By employing multiple 
assessment tools, the study ensures the chosen distribution is reliable for predicting return periods. Results 
indicate that the GPA distribution best fits the annual peak flow data for this site, making it a strong 
candidate for both regional and local FFA applications in Johor’s River systems for future research.  
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