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 Handwriting-based authentication continues to be a critical element in 
forensic analysis, particularly in the context of document fraud and 
signature forgery. Although deep learning (DL) techniques have shown 
promising results, there are still obstacles associated with the availability 
of limited datasets, the generalization of models, and their robustness. 
This review conducts a systematic examination of recent developments 
in DL methods for signature forgery detection. It employs the PRISMA 
protocol and retrieves literature from four well-established databases: 
Scopus, ACM Digital Library, Web of Science, and IEEE Xplore. 
Following a rigorous screening procedure, a total of 15 primary studies 
published between 2019 and 2025 were selected from an initial 115 
records that were filtered by Computer Science subject area, English 
language, and original research articles. Five publicly accessible 
datasets: CEDAR, BHSig260, ICDAR 2011 SigComp, Kaggle signature 
verification dataset by RobinReni, and Kaggle handwritten signatures 
by Divyansh Rai were identified and analysed. The review indicates that 
Siamese networks dominate the DL architecture for signature forgery 
detection tasks, while alternative methods either employed fine-tuned 
pre-trained models (i.e., VGG16) or a hybrid of autoencoders and 
Convolutional Neural Networks (CNNs). An accuracy of 100% has been 
achieved through utilization of Siamese network leveraging the CEDAR 
dataset. This result is reasonable since CEDAR has the advantages of 
clean and balanced dataset. In response to the persisting limitations, this 
review emphasizes Generative Adversarial Networks (GANs) as the 
powerful data augmentation technique and a potential solution to enrich 
training datasets, simulate diverse forgery patterns, and enhance the 
robustness of models. Finally, a generative-aware conceptual framework 
is proposed at the end of the review to inform future research on the 
development of offline handwriting signature forgery detection system 
that is more resilient and forensic-ready. 
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1. INTRODUCTION 

Handwriting continues to play an important role in personal authentication, particularly in forensic and 
legal contexts where signature verification is central to identity validation and document security. Despite 
the proliferation of digital alternatives, handwritten signatures remain widely utilized in sectors such as 
such as banking, contracts, education, and healthcare, making them susceptible to forgery and fraud. 

Offline handwriting signature forgeries can be broadly classified into three categories: random (or 
blind) forgeries, simple (or unskilled) forgeries, and skilled (or simulated) forgeries. Random forgeries 
occur when the forger has no access to the genuine signature and attempts to replicate it without any 
reference, resulting in signatures with little to no similarity to the original. Meanwhile, simple forgeries 
occur when the forger knows the person's name but does not have access to the actual signature, resulting 
in attempts that may mimic the general style but lack precision. Skilled forgeries, on the other hand, are 
produced by those who have access to actual signature samples and have practiced copying them, making 
them the most difficult to detect since they are so identical to original signatures (Hafemann et al., 2017). 

The conventional methods of signature forgery detection, which frequently depend on human 
examiners or handcrafted features, are constrained in their scalability, objectivity, and accuracy. The 
automation of signature forgery detection has gained more prominence as a result of the emergence of 
artificial intelligence (AI) and DL. Sequential CNNs (Balaji et al., 2024), Siamese networks (Joe Harris & 
Anitha, 2023) and Autoencoder-based (Swamy et al., 2024) models have all shown significant potential in 
the detection of skilled and simulated forgeries. These models provide adaptability across writer-
independent scenarios in addition to enhanced performance. Nevertheless, substantial challenges continue 
to exist, despite these advancements. The generalizability of the model is still constrained by dataset 
limitations, varying handwriting styles, and the complexity of skilled forgeries. Furthermore, most models 
trained on benchmark datasets often struggle to maintain robustness under real-world conditions that 
include noise, document degradation, and cross-domain variations (Engin et al., 2020).  

Addressing these dataset limitations and generalizability issues, GANs have emerged as a powerful 
data augmentation component within the training pipeline. In contrast to discriminative models such as 
CNNs, which generally utilize conventional data augmentation methods like rotation, flipping, or scaling 
(Swamy et al., 2024), GANs is capable to generate entirely new and realistic samples that closely resemble 
the training distribution (Goodfellow et al., 2017; Wang & Jia, 2019). In the context of offline signature 
forgery detection, GANs can simulate high-fidelity synthetic forgeries, particularly skilled forgeries, which 
traditional augmentation methods often struggle to realistically re-create. This not only expands the dataset 
but also introduces controlled variability, allowing models to better generalize and resist overfitting. 
Consequently, GANs represent a significant paradigm shift in the approach to data scarcity, variability, and 
robustness in the context of AI-driven signature forgery detection. This review emphasizes GANs not 
merely as a supporting technique but as a transformative tool for enhancing the realism, diversity, and 
forensic-readiness of training datasets. 

While several past reviews have examined handwriting and signature verification systems, many have 
predominantly concentrated on machine learning techniques (Soelistio et al., 2021) without incorporating 
the most recent advancements in deep learning and generative adversarial networks. Hafemann et al. (2017) 
conducted a survey of offline signature verification approaches but omitted current architectural 
innovations, like Transformer-based models and Siamese Networks. In contrast, this review incorporates 
recent peer-reviewed works (2019–2025) employing current deep learning architectures with multiple 
benchmark datasets. More importantly, it uniquely explores the emerging role of generative adversarial 
networks in addressing persistent challenges such as data scarcity, complexity, and model robustness, which 
remains underexplored in existing literature. The following shows the objectives of this review: 
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a) To synthesize recent deep learning models in AI-driven offline handwriting signature forgery 
detection. 

b) To analyse challenges especially the ones related to offline handwriting signature datasets. 
c) To explore the emerging role of generative adversarial networks in addressing offline 

handwriting signature datasets challenges. 
d) To propose a generative-aware conceptual framework that is recent, more resilient and 

forensic-ready for future development of offline handwriting signature forgery detection 
system. 

2. METHODOLOGY 

The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) protocol, a widely 
recognized framework for improving the rigor and reproducibility of systematic reviews in scientific 
domains, is invoked in this review to ensure a structured and transparent approach (Page et al., 2021). This 
protocol was modified to accommodate the scope of this review, which is focused on the application of 
deep learning in handwriting forensics, with a particular emphasis on the detection of offline signature 
forgery and identity-related manipulation. The PRISMA-based strategy facilitated a rigorous process of 
identification, screening, eligibility evaluation, and inclusion of relevant articles, thereby ensuring 
consistency and objectivity throughout the review process.  

The review process consisted of four important stages: (a) the identification of relevant records from 
selected databases, (b) the removal of duplicates, (c) the assessment of titles and abstracts with respect to 
inclusion and exclusion criteria, and (d) the full-text evaluation of eligible studies. 

2.1 Database selection and search strategy 

Four established and high-impact databases were utilized for literature retrieval: Scopus, ACM Digital 
Library, IEEE Xplore, and Web of Science. The databases were chosen for their comprehensive coverage 
of peer-reviewed publications in the fields of computer science, artificial intelligence, and digital forensics. 
The following search queries were composed using meticulously structured Boolean expressions that 
combined domain-specific terms: 

(“handwriting forgery” OR “signature forgery” OR “document fraud”) AND (“deep learning” OR “neural 
networks” OR “generative artificial intelligence” OR “generative adversarial networks”) 

The search was confined to articles published between 2019 and 2025, written in English, and classified 
under the Computer Science subject area. This period was chosen to indicate the time at which generative 
adversarial networks started to be practically utilized in handwriting forensics tasks including synthetic 
handwriting generation, anomaly detection, and counterfeit detection. Restricting the review to this time 
ensures that the included studies fit the present methodological setting and are pertinent to the state-of-the-
art advancements in the domain. Reviews, editorials, and non-peer-reviewed works were excluded, and 
only original research articles and conference papers were considered. 

2.2 Study identification and screening process 

A preliminary collection of 115 records was obtained: Scopus (n = 47), ACM (n = 18), IEEE Xplore 
(n = 37), and Web of Science (n = 13). Following the elimination of 59 duplicate entries, 56 distinct records 
underwent a multi-phase screening process that included title screening, abstract screening, and full-text 
assessment (before any screening process n = 56).  

The relevance of the articles was initially determined by looking at their titles. A total of eleven records 
were disregarded because they were deemed irrelevant. These records included studies that concentrated 
on hardware implementation or emotion detection rather than forgery analysis. After filtering the titles, the 
total number of articles is 45 (title screened n=45). 
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Following that, the relevance of articles was screened by reading their abstracts. Nine studies were 
disqualified because they presented models that were simply conceptual in nature, frameworks that were 
end-to-end but did not have empirical validation, or content that was not in English. The total number of 
articles after the screening of abstracts (abstract screened n = 36). 

Finally, the inclusion criteria were met by 15 articles after the full texts were evaluated. The remaining 
21 articles were excluded due to the following reasons: the use of privately collected or real-time data, the 
absence of performance evaluation, or the presentation of conceptual frameworks that were not 
reproducible. The total number of articles after full-text screening is 15 (full-text screened n = 15). Fig. 1. 
depicted the flow diagram of PRISMA protocol for both identification and screening process of this review. 
 

 

Fig. 1. PRISMA protocol flow diagram for filtering 15 relevant articles  

2.3 Inclusion and exclusion criteria 

This study employed inclusion and exclusion criteria to maintain the relevance and quality of the 
literature examined during the article selection process. Studies were selected if published in peer-reviewed 
journals or conference proceedings and focused on offline handwriting signature forgery detection. 
Moreover, qualifying studies must have utilized artificial intelligence (AI) or DL methodologies, 
encompassing, but not restricted to CNNs, Transformer-based architecture, hybrid models, or generative 
models. A fundamental requirement was the reporting of evaluation metrics pertinent to forgery detection, 
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Records identified from databases 
(n=115) 

• Scopus (n=47) 
• ACM (n=18) 
• IEEE Xplore (n=37) 
• Web of Science (n=13) 

Records removed 
• Duplicate records removed 

(n=59) 

Title screened (n=45) 
• Scopus (n=38) 
• ACM (n=2) 
• IEEE Xplore (n=3) 
• Web of Science (n=2) 

Abstract screened (n=36) 
• Scopus (n=30) 
• ACM (n=2) 
• IEEE Xplore (n=3) 
• Web of Science (n=1) 

Full text screened (n=15) 
• Scopus (n=13) 
• ACM (n=0) 
• IEEE Xplore (n=2) 
• Web of Science (n=0) 

Total studies included in review 
(n=15) 

Records excluded (n=9). Reasons 
for exclusion: 

• End-to-end framework  
• Conceptual research 
• Non-English language 

Records excluded (n=21). Reasons 
for exclusion: 

• Own collected data 
• Leverage real time data 
• No results provided 

Records excluded (n=11). Reasons 
for exclusion: 

• Deep learning unavailable 
• Hardware related 
• Emotional recognition 
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including accuracy, precision, recall, and F1-score. Only research published in English were included to 
ensure consistency and interpretative accessibility. 

On the other hand, studies were excluded if they were based on non-peer-reviewed sources, such as 
blog entries, technical reports, or preprints that did not undergo rigorous peer review. Articles that were 
exclusively theoretical, which lacking experimental validation or implementation results were also 
excluded. In addition, this review did not include research that exclusively focused on handwriting 
recognition (i.e., character or word transcription) without a direct emphasis on forgery or forensic detection 
applications.  

Consequently, the following key attributes were extracted from each study: the specific forgery 
scenario addressed, the year of publication, the dataset(s) used, the learning model architecture, the use of 
generative techniques, performance results, and limitations noted by authors. This data was collected to 
facilitate comparative synthesis, trend analysis, and gap identification in the subsequent sections. 

3. RESULTS 

The results section is organized to initially provide an overview of the datasets, followed by the performance 
comparative analysis of all 15 deep learning models from the PRISMA protocol in offline handwriting 
signature forgery detection. 

3.1 Dataset overview 

This review incorporates five (5) publicly available offline signature datasets, which are extensively 
used in offline handwriting signature forgery detection studies. These datasets contain a balanced mix of 
genuine and forged samples from a wide range of signers and serve as important benchmarks for training 
and evaluating deep learning models. The datasets chosen include CEDAR (Srihari & Leedham, 2001), 
BHSig260 (Kathuria, 2022), ICDAR 2011 SigComp (Liwicki et al., 2011), Kaggle signature verification 
dataset by RobinReni (Reni, 2019), and Kaggle handwritten signatures by Divyansh Rai (Rai, 2020). 

The CEDAR dataset (Srihari & Leedham, 2001) is widely regarded as a fundamental benchmark in 
offline signature verification. The dataset comprises 2,640 grayscale signature images from 55 signers, with 
each signer providing 24 genuine and 24 forged samples. A primary advantage is its balanced architecture 
and regulated acquisition settings, rendering it optimal for training and assessing models in a noise-free 
setting. Nonetheless, a significant disadvantage of the dataset is its comparatively small participant pool, 
which constrains its capacity to generalize across varied writing styles. The dataset consists solely of 
English-language signatures, hence constraining its relevance in multilingual or cross-script research. 

Meanwhile, BHSig260 dataset (Kathuria, 2022) is a large-scale signature dataset with 260 signers: 100 
in Bengali and 160 in Hindi. It comprises 24 authentic and 30 counterfeit signatures per user, amounting to 
almost 14,000 samples. Its strength is its wide range of languages and big sample size, which make it a 
useful benchmark for evaluating signature verification systems in scripts other than Latin. However, its 
constraints include script specificity, making it less relevant for Latin-based handwriting models as well as 
diversity in the quality and style of forgeries, which can generate errors during training or evaluation. 

On the other hand, the ICDAR 2011 SigComp dataset (Liwicki et al., 2011) was initially developed for 
a competition. The signature images of 106 individuals are included in this dataset, with 64 of them being 
used for training and 42 for testing. The test set contains a minimum of 12 genuine and 12 forged samples 
per signer, while the training set contains a minimum of 24 genuine and 8 forged signatures per user. The 
dataset's primary advantage is its design for benchmarking, which allows for a rigorous writer-independent 
evaluation due to appropriate separation between training and testing users. Nevertheless, its constraints 
include the fact that it is relatively older and has some image quality constraints, as well as limited cultural 
or linguistic diversity, as it exclusively studies Dutch signatures. 
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Reni (2019) created the Kaggle signature verification dataset, which is a preprocessed version of Dutch 
signature samples from the ICDAR 2011 SigComp. It contains 2,149 labeled images of genuine and forged 
signatures. Its key advantages are accessibility and usability. This dataset is curated in a format that 
simplifies loading and training, making it ideal for rapid prototyping and model development. On the 
downside, it does not adhere to a rigorous train/test split and has a moderate dataset size, which may limit 
its appropriateness for models that require larger-scale evaluations. 

Lastly, the Kaggle handwritten signatures of Divyansh Rai (Rai, 2020). This small collection has 300 
signature images from 30 signers, with each providing five genuine and five forged samples. Its tiny size 
makes it ideal for educational applications, rapid model prototyping, and resource-constrained scenarios. 
However, its scale has severe limitations in terms of unpredictability, generalizability, and real-world use. 
It might not be appropriate for training deep models or conducting large-scale studies. 

Collectively, these datasets encompass a wide variety of forgery types, writing scripts, and signer 
diversity, rendering them appropriate for assessing the robustness and efficacy of deep learning models in 
the detection of offline signature forgeries. Their public availability guarantees the reproducibility and 
accessibility of academic and applied research. Each dataset is further synthesized in Table 1, which 
includes its key features, advantages, as well as disadvantages. 

 
Table 1. Key features, advantages, and disadvantages of selected dataset 

 

3.2 Data augmentation techniques 

Data augmentation is often crucial for improving the robustness and generalizability of deep learning 
models, particularly when working with limited datasets such as those common in offline signature forgery 
detection. Nevertheless, data augmentation approaches were predominantly absent from the examined 
studies. Traditional augmentation methods were reported in a restricted number of publications (Swamy et 
al., 2024), specifically applying geometric transformations such as image flipping, rotation, cropping, and 
contrast or brightness adjustments to artificially increase training diversity. Despite their simplicity, these 
methods may offer only marginal improvements in simulating skilled forgeries, which frequently 
encompass nuanced, high-fidelity handwriting characteristics that such techniques are incapable of 
replicating. 

The lack of complete augmentation in most studies reveals a fundamental gap in the existing research 
landscape. This constraint has obvious implications for model overfitting and poor generalization, 
especially when evaluated against unknown or degraded samples. In response, this review proposes the 
integration of Generative Adversarial Networks (GANs) specifically Signature GANs, as a more advanced 

Dataset Key features Advantage(s) Disadvantage(s) 

CEDAR  
(Srihari & Leedham, 2001) 

55 signers, 24 genuine 24 forged 
samples each, total of 2640 
grayscale images 

Balanced and clean dataset, 
advisable for 
benchmarking 

Limited signer diversity, 
English only, less suitable 
for cross-script research 

BHSig260  
(Kathuria, 2022) 

260 signers (100 Bengali, 160 
Hindi), 24 genuine 30 forged 
samples each  

Large-scale, multilingual 
script support, high 
variation 

Limited to Indic script, 
variability in forgery quality 

ICDAR 2011 SigComp 
(Liwicki et al., 2011) 

106 signers, 64 signers for training, 
42 signers for testing,  

Supports writer-
independent evaluation 

Dutch only, some outdated 
samples, limited scalability 

Kaggle signature 
verification dataset  
(Reni, 2019) 

2149 pre-processed Dutch signature 
images 

Easy to use, curated 
format, ideal for fast 
prototyping 

Medium sized, no strict 
train/test split, limited 
cultural diversity 

Kaggle handwritten 
signatures of Divyansh Rai 
(Rai, 2020) 

30 signers, 5 genuine 5 forged 
samples each, total of 300 offline 
handwriting samples 

Lightweight, useful for 
small-scale or educational 
projects 

Quite small for deep learning 
models, limited variability 
and generalization 
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data augmentation technique. GANs provide a unique benefit by generating realistic synthetic forgeries that 
closely resemble variances in human handwriting (Goodfellow et al., 2017; Wang & Jia, 2019). In contrast 
to traditional augmentations, GANs learn from authentic data distributions and generate intricate and 
realistic forgeries, which introduce controlled variability and improve the training set diversity. These 
properties allow GANs to surpass the constraints of traditional data augmentation techniques, which 
frequently fail to capture the intricate, skilled-level features of handwritten signatures. As a result, GAN-
based augmentation is essential for mitigating dataset scarcity and improving model robustness in the 
offline signature forgery detection process. This augmentation strategy not only strengthens model learning 
but also enhances resilience against adversarial inputs and real-world noise, supporting the forensic 
readiness of future signature forgery detection systems. 

3.3 Comparative analysis 

This section provides a synthesis of the accuracy findings obtained from the total studies included in 
review (n=15) which are shown in Table 2. All studies employed the deep learning methods to the forgery 
detection of offline handwriting signatures. Accuracy is selected as the primary metric as it reflects as the 
most frequently reported, and interpretable metric. Accuracy measures the proportion of correctly classified 
signatures (genuine or forged) relative to the total number of samples. 

 
Table 2. Accuracy comparative analysis  

Study Deep learning method Dataset Accuracy 
result (%) 

Joe Harris & Anitha (2023) Siamese network, Euclidean distance, 
contrastive loss function CEDAR 100.0 

Chokshi et al. (2023) Siamese network, scattering wavelets 
learning approach, Euclidean distance CEDAR 99.91 

Balaji et al. (2024) CNN with hyperparameter tuning Kaggle signature verification 
dataset by RobinReni 99.8 

Emberi et al. (2023) Siamese network Kaggle signature verification 
dataset by RobinReni 99.756 

Majumder et al. (2023) Siamese Transformer network, triplet loss 
function CEDAR 99.17 

Anitha et al. (2024) Siamese network, Harris corner feature 
detection BHSig260 (Hindi only) 98.9 

Swamy et al. (2024) Hybrid of autoencoders and CNN CEDAR 98.4848 

Shirisha et al. (2024) VGG16 with transfer learning Kaggle signature verification 
dataset by RobinReni 98.26 

Chokshi et al. (2023) Siamese network, scattering wavelets 
learning approach, Euclidean distance ICDAR 2011 SigComp 97.76 

Minh Tram & Chau (2024) Pre-trained VGG16 with hyperparameter 
tuning CEDAR 96.14 

Reddy et al. (2024) Siamese network, Euclidean distance, 
contrastive loss function ICDAR 2011 SigComp 96.0 

Krishna & Bhuvaneswari (2023) 20 hidden layers of multi-layer perceptron Kaggle handwritten signatures 
by Divyansh Rai 92.4 

Tehsin et al. (2024) Siamese network, Euclidean distance, 
triplet loss function BHSig260 91.5 

Joe Harris & Anitha (2023) Siamese network, Euclidean distance, 
contrastive loss function BHSig260 (Hindi only) 87.13 

Tehsin et al. (2024) Triplet loss Siamese network CEDAR 86.1 

Tarek & Atia (2022) Pre-trained ResNet50 Kaggle handwritten signatures 
by Divyansh Rai 82.0 

Chaturvedi & Jain (2022) 

Ensemble feature extractor and classifier, 
concatenation of geometrical features and 
features extracted from pre-trained 
MobileNet 

BHSig260 (Hindi skilled 
forgery) 69.1 

Jain et al. (2021) Shallow Siamese network, Euclidean 
distance, contrastive loss function 

Kaggle signature verification 
dataset by RobinReni 

73.0 
(Precision) 
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Table 2 reveals that offline signature forgery detection with deep learning model can be divided into 

three (3) categories: high, moderate, and low performances. Deep learning models that achieve more than 
90% accuracy belongs under high performance category. Meanwhile, deep learning models with accuracy 
between 80% to 89% falls under the moderate performance category, and finally the models with accuracy 
below 80% is considered low performance deep learning models. The research conducted by Joe Harris & 
Anitha (2023) attained flawless accuracy of 100% utilizing a Siamese network with contrastive loss on the 
CEDAR dataset, ranking among the most effective deep learning model.  

Siamese networks dominate the offline signature forgery detection field because of their robustness 
and adaptability across datasets. However, the choice of dataset has a significant impact on model 
performance, with CEDAR (Srihari & Leedham, 2001) and Kaggle signature verification dataset by 
RobinReni (Reni, 2019) provides higher accuracies, but datasets such as BHSig260 (Kathuria, 2022) 
particularly with skilled forgeries pose larger hurdles. This can be seen through the work by Chaturvedi & 
Jain (2022) where they reported only 69.1% accuracy despite employing a Siamese network, underscoring 
how dataset-specific challenges can affect results. The study by Jain et al. (2021) reported the precision 
results instead of accuracy. On the other hand, integrating advanced components such as scattering 
wavelets, Transformer blocks, or Autoencoders significantly boost forgery detection performance, 
suggesting captivating paths for future research. 

4. DISCUSSIONS AND FUTURE WORK 

This section discusses several deep learning models that achieve high performance (accuracy more than 
90%) in forgery detection of offline handwriting signatures. Notably, Siamese networks, Siamese networks 
with scattering wavelets learning approach, Siamese Transformer network, VGG16 with transfer learning, 
and CNNs integrated with autoencoders have consistently achieved accuracy ranging from 96% to 100% 
across benchmark datasets. These findings highlight the potential of embedding-based similarity measures 
(Siamese networks), spatial encoding (Transformers), and convolutional feature extraction (VGG16 and 
CNNs) in learning offline signature features effectively. 

The Siamese networks (Joe Harris & Anitha, 2023; Emberi et al., 2023; Reddy et al., 2024) dominate 
the landscape, often coupled with enhancements such as scattering wavelets learning approach (Chokshi et 
al., 2023) or Transformer network (Majumder et al., 2023). Siamese networks outperform the standard deep 
learning model i.e., standalone CNN, which often inadequately captures particular signature styles, 
resulting in suboptimal performance. Their success lies in their architecture's ability to learn relative 
similarity between signature pairs, allowing them to generalize well even with limited samples. Typically, 
a Siamese network consists of two identical sub-networks sharing weights and parameters, each receiving 
a different input image. The outputs are compared using a distance metric, usually Euclidean distance to 
determine its similarity. This architecture is particularly effective when trained with a contrastive loss 
function, which minimizes the distance between matching pairs while maximizing it for non-matching ones 
(Hadsell et al., 2006). Another alternative is the triplet loss function. This function compares an anchor 
image to both a positive and a negative sample and optimizes the network so that the anchor is closer to the 
positive than the negative by a specified margin (Schroff et al., 2015). While contrastive loss is 
computationally efficient with fewer samples, triplet loss frequently delivers greater discriminatory power 
in complex classification circumstances, especially when there are subtle differences in signatures. Table 3 
depicts the differences between contrastive and triplet loss functions according to several criterion. 
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Table 3. Contrastive loss function vs triplet loss function 

  

The comparisons in Table 3 suggest that in low-resource or low-variation settings, contrastive loss offers a 
simpler and effective approach. Meanwhile, for high-stakes applications involving skilled forgeries or 
cross-writer verification, triplet loss provides superior performance and granularity. 

Furthermore, recent advancements in offline handwriting signatures forgery detection have 
investigated hybrid architectures that integrate the strengths of Siamese networks with Transformer-based 
encoders. This architecture employs a Siamese network, where each branch incorporates a Transformer 
encoder that analyzes signature embeddings via self-attention methods. In contrast to CNNs that 
concentrate mostly on local spatial attributes, Transformer-based modules allow the model to comprehend 
global structural linkages among strokes, curves, and spacing abnormalities, which are frequently essential 
for identifying competent forgeries. Table 4 shows the advantages and disadvantages of integrating the 
Transformer encoder into the Siamese network. 
 
Table 4. Advantages and disadvantages of transformer encoder  

 

 

 

 

 

 
 

Meanwhile, the VGG16 deep learning model, a well-established architecture in image classification, 
also proves effective when adapted to offline handwriting signature forgery detection, particularly with 
transfer learning (Shirisha et al., 2024) and hyperparameter tuning (Minh Tram & Chau, 2024). VGG16's 
architecture is composed of 13 convolutional layers, followed by three fully connected layers, all utilizing 
small (3x3) convolutional filters with ReLU activations. This deep and uniform structure enables it to 
extract rich hierarchical features from input images, rendering it particularly well-suited for tasks such as 
signature verification, where subtle stroke differences are significant (Simonyan & Zisserman, 2014). 
Nevertheless, their efficacy is contingent upon the dataset and the fine-tuning strategy that is implemented. 
VGG16 is susceptible to overfitting and slow training when the dataset size is limited due to its extensive 
parameter set.  

Criterion Contrastive loss function Triplet loss function Recommended use case 

Input structure Pairwise input (genuine-
genuine or genuine-forgery) 

Triplet input (anchor, positive, 
negative) 

Triplet loss is preferred when 
subtle intra-class differences 
are present 

Loss objective 
Minimize distance for similar 
pairs, maximize for dissimilar 
ones 

Ensures anchor is closer to positive 
than to negative by a specified 
margin 

Contrastive loss is effective 
for simpler verification tasks 

Training efficiency Faster training with fewer 
samples 

Requires more structured triplet 
selection, leading to slower training 

Use contrastive when data is 
limited or less diverse 

Discriminative power Moderate Higher in complex decision 
boundaries 

Triplet loss for fine-grained 
classification such as skilled 
forgery detection 

Implementation 
complexity Relatively straightforward More complex due to triplet mining 

strategies 

Contrastive for prototype 
verification; Triplet for high 
security systems 

Advantage(s) Disadvantage(s) 

Captures both local texture and global 
signature structure  

Transformer layers add significant parameters thus, 
require careful model optimization 

Reduces overfitting on writer specific 
traits  

Self-attention mechanism typically performs better 
with larger training datasets 

More adaptable to variable-length inputs May suffer from convergence issues if not properly 
regularized or pre-trained 
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On the other hand, hybrid deep learning models that combine CNNs with autoencoders (Swamy et al., 
2024) also demonstrate potential by compressing signature representations and reconstructing them to 
emphasize distinguishing features. Autoencoders are unsupervised learning models that acquire the ability 
to encode input data into a lower-dimensional latent space and subsequently decode it back to its original 
form (Khan et al., 2020). Within the context of CNNs with autoencoders, the CNN acts as a powerful 
feature extractor, while the autoencoder refines these features by reconstructing the signature image. This 
reconstruction process forces the hybrid model to preserve the most salient and distinguishing features of a 
signature, effectively reducing noise and irrelevant variations. As a result, this model becomes more robust 
in distinguishing between genuine and forged signatures, particularly in datasets with limited labeled 
samples. 

However, despite the encouraging performance in benchmark scenarios, three major challenges persist 
that impact real-world deployment: 

a) Dataset challenges. Most studies relied on limited or specific datasets, which reduces the 
diversity of signature variations in terms of culture, language, and writing instruments. 
Subsequently, models trained on these datasets tend to show high performance in controlled 
environments but struggle to generalize. The implication is a significant gap in model 
robustness when deployed in practical and diverse contexts. 

b) Discriminative model challenges. While discriminative models like Siamese and VGG-based 
architectures achieve high accuracy, they often operate as black boxes. Their dependency on 
dataset-specific features makes them prone to overfitting, and the lack of transparency reduces 
trust in high-stakes environments like banking or legal authentication. Moreover, the absence 
of interpretability tools limits understanding of model decisions. 

c) Deployment challenges. Most of the developed models lack resilience to noise and real-world 
variability. The accuracy scores reported in the literature assume clean and well-aligned 
signature samples, while actual verification systems must contend with occlusions, blurred 
scans, and variable lighting. As a result, model robustness under real-world deployment 
remains an open challenge. 

4.1 Towards end-to-end generative-aware conceptual framework 

An end-to-end generative-aware conceptual framework is proposed. It unifies several essential 
innovations: data augmentation, hybrid architecture, noise resilience, and explainable verification. This 
proposed framework addresses current limitations in dataset diversity, model generalization, real-world 
robustness, and interpretability. It is further organized into four interconnected stages as shown on Fig. 2. 
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Fig. 2. Proposed end-to-end generative-aware conceptual framework 

Stage 1: Data Preparation. Self-collected signature images as well as signature datasets such as CEDAR 
(Srihari & Leedham, 2001) and BHSig260 (Kathuria, 2022) are composed as foundational data. A 
specialized Signature Generative Adversarial Network (GAN) is trained to generate synthetic forgeries that 
simulate variations in signatures’ style and structure. It utilizes Generative Adversarial Networks (GANs) 
to synthetically produce realistic signature samples by learning the intricate variations found in handwriting, 
such as pressure, stroke curvature, and pen lifts. Introduced by Goodfellow et al. (2017), GANs consist of 
two core components: a generator that aims to produce synthetic data samples resembling real data, and a 
discriminator that evaluates whether a given sample is real or generated. These two networks are trained 
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simultaneously in a minimax game, where the generator strives to deceive the discriminator, and the 
discriminator attempts to accurately identify genuine versus forged samples. This adversarial training 
process allows the Signature GAN to model complex data distributions more effectively than conventional 
augmentation methods, such as rotation, flipping, and scaling. The visual process of GANs is shown in Fig. 
3. 

 

Fig. 3. GANs process between a generator and a discriminator  

From a computational standpoint, while GANs require extended training durations and meticulous 
tuning to ensure stability, they significantly reduce the necessity for repetitive, hand-crafted augmentation 
techniques. This optimizes the data enrichment procedure and reduces design intricacy. Researchers like 
Dash et al. (2023) have emphasized the significance of employing GANs in tasks where data authenticity 
and variety are critical, such as signature forgery detection. The use of Signature GANs, in particular enable 
the generation of scalable and balanced datasets that encompass diverse forgery scenarios, eliminating the 
necessity for manual intervention or additional data collection. This technique efficiently mitigates data 
scarcity while incorporating controlled variability during training, essential for creating robust and 
generalizable forgery detection model. 

Stage 2: Noise resilient pre-processing. As the real-world variability involve noises such as occlusions, 
blurred scans, and variable lighting, this stage ensures the dataset quality through preprocessing steps such 
as binarization (converting grayscale or color signature images into binary black-and-white format to 
enhance contrast), background removal (eliminating unnecessary background textures or lines that may 
interfere with signature contours), and stroke normalization (adjusting stroke width, continuity, and 
alignment to standardize writing patterns across samples). It is further strengthened with adversarial training 
to increase robustness and resilience to unexpected input degradation. 

Stage 3: Model training. The core architecture is a Hybrid Siamese-Transformer Network, which 
merges the strengths of Siamese structures and Transformer-based encoders. The Siamese network allows 
for effective use of triplet loss to measure similarity between anchor-positive-negative pairs, while the 
Transformer encoder captures long-range dependencies in the stroke sequence. In addition, an auxiliary 
binary classification submodule is introduced at the end of this hybrid architecture, so that it can strongly 
improve the detection between genuine and forged signatures, particularly in skilled forgery detection. 
Interpretable visual outputs such as saliency maps and heatmaps are added to contribute to the system’s 
transparency and trustworthiness. 

Stage 4: Benchmark evaluation. This final stage aims to assess the model’s generalizability and 
robustness across diverse real-world conditions. This stage consists of two key components: dataset 
diversity performance scores and cross-domain metrics. The first component evaluates how well the model 

• Generate realistic samples  
• Try to make the discriminator 

decide that this is true 

GENERATOR DISCRIMINATOR 

Try to distinguish between real 
samples and samples generated 

by the generator 
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performs across multiple signature datasets with varying languages, writing styles, cultural characteristics, 
and acquisition conditions. Metrics such as accuracy, precision, and recall are used to determine the model’s 
adaptability and resistance to overfitting. The second component, cross-domain metrics, focuses on how 
well the model transfers to unseen domains such as new user populations or degraded documents. Together, 
these metrics ensure the model is not only benchmark-strong but also practically deployable, robust, and 
fair in real-world applications. 

5. CONCLUSIONS 

This review paper provided an extensive examination of AI-driven offline handwriting signature forgery 
detection, focusing specifically on deep learning and novel generative adversarial networks methodologies. 
A rigorous analysis of existing models, datasets, and performance indicators revealed that Siamese-based 
architecture prevails in the field due to their capacity to learn relative similarity between pairs of signatures. 
Although great accuracy has been attained on controlled datasets like CEDAR (Srihari & Leedham, 2001), 
deployment issues remain in real-world settings because of differences in dataset complexity, noise, and 
extraneous fluctuations. Meanwhile, hybrid Siamese-Transformer models and Generative-Aware 
frameworks exhibit considerable potential for addressing existing constraints, particularly by improving 
contextual learning and resilience while mitigating overfitting concerns. 

Furthermore, the role of data augmentation is equally significant, since the integration of Signature 
GANs produces realistic, high-fidelity synthetic samples that mitigate the ongoing issue of data scarcity. In 
contrast to conventional augmentation techniques that utilize fixed, manually designed transformations, 
Signature GANs acquire intricate handwriting distributions directly from authentic examples. This 
facilitates the creation of sophisticated forgeries that more accurately represent real-world variances. Thus, 
this augmentation technique not only improves training diversity but also strengthens model robustness 
under degraded or adversarial conditions. 

Future research should prioritize the integration of generative adversarial networks for both data 
augmentation and forgery detection, development of noise-tolerant models, and embedding explainable AI 
mechanisms to ensure transparency and trustworthiness in forensic applications. By solving these crucial 
shortcomings, AI-driven offline handwriting signature forgery detection can move closer to reaching 
forensic-grade reliability suited for implementation in high-risk legal, financial, and security situations. 
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