Fuzzy Time Series for Projecting School Enrolment in Malaysia

Fuzzy Time Series for Projecting School Enrolment in Malaysia

Authors

  • Nor Hayati Shafii Universiti Teknologi MARA, Perlis Branch, Arau Campus
  • Rohana Alias Universiti Teknologi MARA, Perlis Branch, Arau Campus
  • Siti Rohani Shamsuddin Universiti Teknologi MARA, Perlis Branch, Arau Campus
  • Diana Sirmayunie Mohd Nasir Universiti Teknologi MARA, Perlis Branch, Arau Campus

DOI:

https://doi.org/10.24191/jcrinn.v6i1.180

Keywords:

Fuzzy Time Series, School Enrolment, Forecasting, Education Level, Accuracy

Abstract

There are a variety of approaches to the problem of predicting educational enrolment.  However, none of them can be used when the historical data are linguistic values.  Fuzzy time series is an efficient and effective tool to deal with such problems. In this paper, the forecast of the enrolment of pre-primary, primary, secondary, and tertiary schools in Malaysia is carried out using fuzzy time series approaches. A fuzzy time series model is developed using historical dataset collected from the United Nations Educational, Scientific, and Cultural Organization (UNESCO) from the year 1981 to 2018.  A complete procedure is proposed which includes: fuzzifying the historical dataset, developing a fuzzy time series model, and calculating and interpreting the outputs. The accuracy of the model are also examined to evaluate how good the developed forecasting model is. It is tested based on the value of the mean squared error (MSE), Mean Absolute Percent Error (MAPE) and Mean Absolute Deviation (MAD).  The lower the value of error measure, the higher the accuracy of the model.  The result shows that fuzzy time series model developed for primary school enrollments is the most accurate with the lowest error measure, with the MSE value being 0.38, MAPE 0.43 and MAD 0.43 respectively.

Downloads

Download data is not yet available.

Author Biographies

Nor Hayati Shafii, Universiti Teknologi MARA, Perlis Branch, Arau Campus

Faculty of Computer & Mathematical Sciences

Rohana Alias, Universiti Teknologi MARA, Perlis Branch, Arau Campus

Faculty of Computer & Mathematical Sciences

Diana Sirmayunie Mohd Nasir, Universiti Teknologi MARA, Perlis Branch, Arau Campus

Faculty of Computer & Mathematical Sciences

References

Chen, S. M. (2002). Forecasting enrollments based on high-order fuzzy time series. Cybernetics and Systems. https://doi.org/10.1080/019697202753306479

Dani, S., & Sharma, S. (2013). Forecasting rainfall of a region by using fuzzy time series. Asian Journal of Mathematics and Applications, 2013(1), 1–10.

Hakan, C., Egrioglu, E., Yolcu, U., & Uslu, V. R. (2014). A high order seasonal fuzzy time series model and application to international tourism demand of Turkey, Journal of Intelligent & Fuzzy Systems, 26, 295–302. https://doi.org/10.3233/IFS-120738 Chen et al.

Hakan, C., Yolcu, U., & Egrioglu, E. (2010). A high order fuzzy time series forecasting model based on adaptive expectation and artificial neural networks. Mathematics and Computers in Simulation, 81(4), 875–882. https://doi.org/10.1016/j.matcom.2010.09.011

Huang, Y. (2015). Weighted Fuzzy Time Series Model for Load Forecasting. NCITPA, 81–90.

Mahdzar, M., Ling, S. M., Nair, M. B., & Shuib, A. (2015). Forecasting tourist arrivals to Sabah using fuzzy time series. International Conference on Natural Resources, Tourism and Services Management 2015.

Ramesh, P., Razak, K. (2018). Forecasting Enrollment using Fuzzy Time Series. International Journal of Pure and Applied Mathematics, 2018(15), 3309- 3313

Stevenson, M., & Porter, J. E. (2009). Fuzzy Time Series Forecasting Using Percentage Change as the Universe of Discourse. World Academy of Science, Engineering and Technology, 55, 154–157.

Downloads

Published

2021-01-01

How to Cite

Shafii, N. H. ., Alias, R. ., Shamsuddin, S. R., & Mohd Nasir, D. S. (2021). Fuzzy Time Series for Projecting School Enrolment in Malaysia. Journal of Computing Research and Innovation, 6(1), 11–21. https://doi.org/10.24191/jcrinn.v6i1.180

Issue

Section

General Computing

Most read articles by the same author(s)

1 2 > >> 
Loading...