Monkeypox and Measles Detection using CNN with VGG-16 Transfer Learning

Monkeypox and Measles Detection using CNN with VGG-16 Transfer Learning

Authors

  • M. Hafidz Ariansyah Dian Nuswantoro University
  • Sri Winarno Dian Nuswantoro University
  • Ramadhan Rakhmat Sani Dian Nuswantoro University

DOI:

https://doi.org/10.24191/jcrinn.v8i1.340

Keywords:

CNN, deep learning, measles, monkeypox, vgg-16

Abstract

The Monkeypox virus causes the infectious illness monkeypox. This virus is spread by coming into touch with infected animals or humans. Monkeypox is very similar to Measles. The rubeola virus causes measles, a contagious infectious disease. The cause is what distinguishes Monkeypox from Measles sickness. Although they are both carried through the air and generate similar symptoms, Monkeypox and Measles are two separate forms of infectious diseases. Vaccination is the most effective way to prevent Measles, while for Monkeypox, no vaccine can be used to prevent infection. In differentiating Monkeypox and Measles disease, the researcher proposes an image classification to distinguish symptoms between Monkeypox and Measles. Researchers used the deep learning method of image classification with Convolutional Neural Network architecture and VGG-16 transfer learning to do the modeling. Transfer learning is a technique that allows a model which has been trained on a dataset to be used on a different dataset. It allowed the model to adapt knowledge from the original data for use in new data. Researchers propose this method because learning using deep learning is very useful for similar images so that the model can accurately predict new data. The result is that the VGG-16 model can achieve high accuracy with a value of 83.333% at epoch value = 15.

Downloads

Download data is not yet available.

References

Agustina, R., Magdalena, R., & Pratiwi, N. K. C. (2022). Klasifikasi Kanker Kulit menggunakan Metode Convolutional Neural Network dengan Arsitektur VGG-16. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 10(2), pp. 446. https://doi.org/10.26760/elkomika.v10i2.446.

Ariansyah, M. H., Winarno, S., & Salam, A. (2023). STB Sentiment Analysis Classification Multiclass Modeling Using Calibrated Classifier With SGDC Tuning As Basis and Sigmoid Method. International Journal of Computer and Information System (IJCIS), 4(1), pp. 1-7. https://doi.org/10.29040/ijcis.v4i1.107.

Diponkor Bala. (2022). Monkeypox Skin Images Dataset (MSID) [Data set]. Kaggle. https://doi.org/10.34740/KAGGLE/DSV/3971903. [Accessed in 20 December 2022].

Di Pietrantonj, C., Rivetti, A., Marchione, P., Debalini, M. G., & Demicheli, V. (2020). Vaccines for measles, mumps, rubella, and varicella in children. Cochrane Database of Systematic Reviews, (4). https://doi.org/10.1002/14651858.CD004407.pub4

Durski, K. N., McCollum, A. M., Nakazawa, Y., Petersen, B. W., Reynolds, M. G., Briand, S., ... & Khalakdina, A. (2018). Emergence of monkeypox in West Africa and Central Africa, 1970-2017/Emergence de l'orthopoxvirose simienne en Afrique de l'Ouest et en Afrique centrale, 1970-2017. Weekly Epidemiological Record, 93(11), pp. 125-133.

Fang, B., Li, Y., Zhang, H., & Chan, J. C. W. (2019). Hyperspectral images classification based on dense convolutional networks with spectral-wise attention mechanism. Remote Sensing, 11(2), 159. https://doi.org/10.3390/rs11020159.

Gessain, A., Nakoune, E., & Yazdanpanah, Y. (2022). Monkeypox. New England Journal of Medicine, 387(19), pp. 1783-1793.

Guarner, J., Del Rio, C., & Malani, P. N. (2022). Monkeypox in 2022—what clinicians need to know. JAMA, 328(2), pp. 139-140. https://doi.org/10.1001/jama.2022.10802.

Gunawan, R. J., Irawan, B., & Setianingsih, C. (2021). Pengenalan Ekspresi Wajah Berbasis Convolutional Neural Network Dengan Model Arsitektur Vgg16. eProceedings of Engineering, 8(5). https://doi.org/10.34818/eoe.v8i5.16400.

Hasan, M. A., Riyanto, Y., & Riana, D. (2021). Klasifikasi penyakit citra daun anggur menggunakan model CNN-VGG16. Jurnal Teknologi dan Sistem Komputer, 9(4), pp. 218-223. 10.14710/jtsiskom.2021.14013.

Huang, Y., Mu, L., & Wang, W. (2022). Monkeypox: epidemiology, pathogenesis, treatment and prevention. Signal Transduction and Targeted Therapy, 7(1), pp. 1-22.

Khamparia, A., Singh, A., Luhach, A. K., Pandey, B., & Pandey, D. K. (2020). Classification and identification of primitive Kharif crops using supervised deep convolutional networks. Sustainable Computing: Informatics and Systems, 28, p. 100340. https://doi.org/10.1016/j.suscom.2019.07.003.

Kmiec, D., & Kirchhoff, F. (2022). Monkeypox: a new threat?. International journal of molecular sciences, 23(14), p. 7866.

Paules, C. I., Marston, H. D., & Fauci, A. S. (2019). Measles in 2019—going backward. New England Journal of Medicine, 380(23), pp. 2185-2187.

Ramnarayan, P., Mitting, R., Whittaker, E., Marcolin, M., O’Regan, C., Sinha, R., ... & Rampling, T. (2022). Neonatal monkeypox virus infection. New England Journal Medicine, 387, pp. 1618-1620.

Rizk, J. G., Lippi, G., Henry, B. M., Forthal, D. N., & Rizk, Y. (2022). Prevention and treatment of monkeypox. Drugs, pp. 1-7. https://doi.org/10.1007/s40265-022-01742-y.

Realegeno, S., Puschnik, A. S., Kumar, A., Goldsmith, C., Burgado, J., Sambhara, S., ... & Satheshkumar, P. S. (2017). Monkeypox virus host factor screen using haploid cells identifies essential role of GARP complex in extracellular virus formation. Journal of Virology, 91(11), pp. e00011-17. https://doi.org/10.1128/jvi.00011-17.

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv, preprint arXiv:1409.1556.

Singh, D., Kumar, V., & Kaur, M. (2021). Densely connected convolutional networks-based COVID-19 screening model. Applied Intelligence, 51(5), pp. 3044-3051. https://doi.org/10.1007/s10489-020-02149-6.

Thornton, J. (2019). Measles cases in Europe tripled from 2017 to 2018. BMJ. 364(634). https://doi.org/10.1136/bmj.l634.

Xu, J., Zhang, Y., & Miao, D. (2020). Three-way confusion matrix for classification: A measure driven view. Information sciences, 507, pp. 772-794. https://doi.org/10.1016/j.ins.2019.06.064.J.

Yang, Z. (2022). Monkeypox: a potential global threat?. Journal of Medical Virology. https://doi.org/10.1002/jmv.27884.

Zhang, Y. D., Satapathy, S. C., Guttery, D. S., Górriz, J. M., & Wang, S. H. (2021). Improved breast cancer classification through combining graph convolutional network and convolutional neural network. Information Processing & Management, 58(2), p. 102439. https://doi.org/10.1016/j.ipm.2020.102439.

Zhu, M., Ji, J., Shi, D., Lu, X., Wang, B., Wu, N., ... & Li, L. (2022). Unusual global outbreak of monkeypox: what should we do?. Frontiers of medicine, 16(4), pp. 507-517.

Downloads

Published

2023-02-28

How to Cite

M. Hafidz Ariansyah, Sri Winarno, & Ramadhan Rakhmat Sani. (2023). Monkeypox and Measles Detection using CNN with VGG-16 Transfer Learning . Journal of Computing Research and Innovation, 8(1), 32–44. https://doi.org/10.24191/jcrinn.v8i1.340

Issue

Section

General Computing
Loading...