Analysis of the Performance Parameters of Queueing Systems M/M/1 with Pre-Emptive Priority in Transient Regime

Analysis of the Performance Parameters of Queueing Systems M/M/1 with Pre-Emptive Priority in Transient Regime


  • Daniel Lama Okenge Department of Mathematics and Physics, Pedagogical Institute of Kindu, D.R.Congo
  • Rostin Mabela Makengo Matendo Department of Mathematics, Statistics and Computer Science, Faculty of Science and Technology, University of Kinshasa, D.R.Congo



Perfomance Measurement, Queuing System, Transient Regime, Absolute Priority


In Markov chain theory, performance parameters are indicator of the proper management of a queue. In this field, an abundant literature exists, particularly in the steady state, which is not the case in the transient state. It is in this context that we can question whether it is possible to establish the equations of the performance measures in the transient regime with absolute priority given the complexity of the study of Markov chains in a transient regime. To achieve this, we used the analytical method based on the exploitation of the Laplace transform in the Kolmogorov equations, as well as the theory of convergent series in the equations resulting from the transition matrices. This analysis is supported by the descriptive technique. These tools allowed us to produce concrete results; which are the performance measures of priority and no priority customers in a transient regime M/M/1 queue. Which is a plus in the field of Markov chains. The purpose of this paper is to analyse the M/M/1 transient performance measures with absolute priority. Its originality lies in the fact that we have determined the expressions of the performance measures of non-priority customers in a transient regime. Indeed, very few publications are made in this area at this time. A numerical application was treated to illustrate the theory evoked above. This reflection could soon be carried out in a fuzzy environment.


Download data is not yet available.


Agnès Lagnoux et Claudie Chabriac. (2012). Processus stochastiques et modélisation. Université De Toulouse De Mirial, Master 2.

Alonge w’Omatete. (2021). Evaluation of the performance parameters of the Markovian queueing system M/M/1 in transient state by the Laplace transform method. Annals of the Faculty of Science and Technology, UNIKIN, vol 1, pp 115-125.

Babu, D., Joshua, V. C., & Krishnanoorthy. (2020). A queueing system with probabilistic joining strategy for priority customers. International Conference on Information Technologies and Mathematical Modelling (pp. 37-42). Springer.

Baudouin Adia, L. M., Rostine Mabela, M. M., Jean Pierre, M. K., & Bopatriciat, B. M. (2022). Analysis of the performance measures of a non-Markovian Fuzzy Queue via Fuzzy Laplace Transforms method. Journal of Computing Research and Innovation (JCRINN), 7(2), 304-315.

Dassa Meriyam (2019). Equation de Kolmogorov et EDP, Mémoire de Master en Mathématiques. Université Mohamed Khider Biskra.

Deepak, G., Aarti, S., & Tripathi. (2022). Mathematical analysis of priority Bi-serial Queue Network Model. Mathematics and Statistics, 10(5): 981-987.

Lama O., D. (2021). Analyse des paramètres de performance de systèmes d’attente avec priorité absolue et applications. Mémoire de DEA Unikin, RDC.

Mabela, M et Alonge W. (2019). Évaluation des paramètres de performance du système d’attente Markovien M/M/1 en régime transitoire par la méthode de transformée de Laplace. In Annales De La Faculté des Sciences (pp. 115-125).

Norbert Verdier, Aurélien Gautreau et Pascal Raini (2022). La transformation de Laplace élémentaire dans les formations mathématiques pour l’ingénieur et le technicien. Du calcul intégral à « l’algébrisation des équations différentielles et la production des tables ». Cahier Francois Viète, III.13, 187-221.

Ritha, W. & Rajeswari. (2021). An analytical study of the M/M/1/N imprecise queuing system encouraged arrivals. Int. J. of Aquatic Science, 12(2), 1349-1359.

Rostin, M. M. M., Daniel, L. O., Claude, M. M., & Bopatriciat, B. M. (2023). Computing the performance parameters of Fuzzy Markovian Queueing System FM/FM/1 in transient regime by Flexible AlphaCuts Method. Journal of Computing Research and Innovation (JCRINN), 8(1), 17-34.

Y cart B. (2014). Files d’attente. In Cahier De Mathématiques Appliquées (pp. 69-131).

Yin, M., Yan, M., Guo, Y., & Liu, M. (2023). Analysis of a pre-emptive two-priority queueing system with impatient customers and heterogeneous servers. Mathematics, 11(18), 3878.




How to Cite

Lama Okenge, D., & Mabela Makengo Matendo, R. (2024). Analysis of the Performance Parameters of Queueing Systems M/M/1 with Pre-Emptive Priority in Transient Regime. Journal of Computing Research and Innovation, 9(1), 131–146.



General Computing