Trends In Tourism Recommendation Systems: A Review
Keywords:
Tourism Recommendation System, Recommendation System, Sustainable tourism, Smart Tourism, Travel Recommendation SystemAbstract
Tourism Recommendation Systems (TRS) are increasingly important in the tourism industry to provide personalized recommendations based on diverse tourist preferences. Technology and big data have transformed TRS from traditional travel agencies to modern digital platforms, enabling the processing of vast amounts of user-generated data for precise recommendations. The study aims to identify strengths and weaknesses within existing TRS frameworks and techniques, propose recommendations to mitigate these weaknesses, and provide insights for practitioners and researchers. Key findings are the effectiveness of personalized and context-aware recommendations, the importance of multimodal data integration, the need for ethical and fair recommendation practices. Future directions in TRS research should focus on exploring and developing explainable AI and transparency, personalization at scale, enhancing multimodal recommendation capabilities, and ensuring ethical and fair recommendation. This review contributes to a deeper understanding of contemporary TRS methodologies and provides actionable insights for enhancing TRS performance. By addressing current trends and proposing recommendations for future research, this paper aims to advance the field of TRS and improve travel experiences for tourists.
Downloads
References
Achmad, K. A., Nugroho, L. E., Diunaedi, A., & Widyawan. (2018). Context based- tourism recommender system: Towards tourists’ context-sensitive preference conceptual model. In 2018 4th International Conference on Science and Technology (ICST) (pp. 1–6). IEEE Xplore. https://doi.org/10.1109/ICSTC.2018.8528676
Adomavičius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 17(6), 734–749. https://doi.org/10.1109/tkde.2005.99
Adomavičius, G., & Tuzhilin, A. (2010). Context-Aware recommender systems. Springer eBooks (pp. 217–253). https://doi.org/10.1007/978-0-387-85820-3_7
Aivazoglou, M., Roussos, A. O., Margaris, D., Vassilakis, C., Ioannidis, S., Polakis, J., & Spiliotopoulos, D. (2020). A fine-grained social network recommender system. Social Network Analysis and Mining, 10(1), 8. https://doi.org/10.1007/s13278-019-0621-7
Aliannejadi, M., & Crestani, F. (2018). Personalized context-aware point of interest recommendation. ACM Transactions on Information Systems, 36(4), 1–28. https://doi.org/10.1145/3231933
Amaral, F., Tiago, T., & Tiago, F. (2014). User-generated content: Tourists’ profiles on TripAdvisor. International Journal of Strategic Innovative Marketing, 1(3), 137-145. https://doi.org/10.15556/ijsim.01.03.002
Ambarwati, L., & Baizal, Z. K. A. (2019). Group recommenders system using hybrid filtering for tourism domain. 4(2), 21–30. https://doi.org/10.21108/indojc.2019.4.2.258
Andrade, M. T., & Almeida, F. (2013). Novel hybrid approach to content recommendation based on predicted profiles. In 2013 IEEE 10th International Conference on Ubiquitous Intelligence and Computing and 2013 IEEE 10th International Conference on Autonomic and Trusted Computing (pp. 507–514). IEEE. https://doi.org/10.1109/uic-atc.2013.49
Arinez, J., Chang, Q., Gao, R. X., Xu, C., & Zhang, J. (2020). Artificial intelligence in advanced manufacturing: Current status and future outlook. Journal of Manufacturing Science and Engineering, 142(11). https://doi.org/10.1115/1.4047855
Bahramian, Z., Ali Abbaspour, R., & Claramunt, C. (2017). A context-aware tourism recommender system based on a spreading activation method. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-4/W4, 333–339. https://doi.org/10.5194/isprs-archives-XLII-4-W4-333-2017
Bakarov, A. (2018). A survey of word embeddings evaluation methods. arXiv preprint arXiv:1801.09536. https://doi.org/10.48550/arXiv.1801.09536
Baltrunas, L., Church, K., Karatzoglou, A., & Oliver, N. (2015). Frappe: Understanding the usage and perception of mobile app recommendations In-The-Wild (arXiv:1505.03014). arXiv. http://arxiv.org/abs/1505.03014
Banerjee, A., Banik, P., & Wörndl, W. (2023). A review on individual and multistakeholder fairness in tourism recommender systems. Frontiers in Big Data, 6, 1168692. https://doi.org/10.3389/fdata.2023.1168692
Bao, J., Zheng, Y., Wilkie, D. A., & Mokbel, M. F. (2015). Recommendations in location-based social networks: a survey. GeoInformatica/Geoinformatica, 19(3), 525–565. https://doi.org/10.1007/s10707-014-0220-8
Bargeman, B., & Richards, G. (2020). A new approach to understanding tourism practices. Annals of Tourism Research, 84, 102988. https://doi.org/10.1016/j.annals.2020.102988
Barranco, M. J., Noguera, J. M., Castro, J., & Martínez, L. (2012). A context-aware mobile recommender system based on location and trajectory. In J. Casillas, F. J. Martínez-López, & J. M. Corchado Rodríguez (Eds.), Management Intelligent Systems (Vol. 171, pp. 153–162). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-30864-2_15
Belaidan, S. L. M., Yee, L. Y., Rahman, N. a. A., & Harun, K. S. (2019). Implementing k-means clustering algorithm in collaborative trip advisory and planning system. Periodicals of Engineering and Natural Sciences, 7(2), 723-740. https://doi.org/10.1016/j.annals.2020.102988
Ben-Shimon, D., Tsikinovsky, A., Rokach, L., Meisles, A., Shani, G., & Naamani, L. (2007). Recommender system from personal social networks. Springer eBooks (pp. 47–55). https://doi.org/10.1007/978-3-540-72575-6_8
Benzaghta, M. A., Elwalda, A., Mousa, M., Erkan, I., & Rahman, M. (2021). SWOT analysis applications: An integrative literature review. Journal of Global Business Insights, 6(1), 55–73. https://doi.org/10.5038/2640-6489.6.1.1148
Borràs, J., Moreno, A., & Valls, A. (2014). Intelligent tourism recommender systems: A survey. Expert Systems with Applications, 41(16), 7370–7389. https://doi.org/10.1016/j.eswa.2014.06.007
Burke, R. (2002). Hybrid recommender systems: Survey and experiments. User Modeling and User-Adapted Interaction, 12(4), 331-370. https://doi.org/10.1023/A:1021240730564
Burke, R., Hammond, K. J., & Young, B. C. (1996). Knowledge-based navigation of complex information spaces. In the National Conference on Artificial Intelligence, 462–468. https://www.aaai.org/Papers/AAAI/1996/AAAI96-069.pdf
Cai, Y., Li, G., Wen, L., & Chang, L. (2024). Intellectual landscape and emerging trends of big data research in hospitality and tourism: A scientometric analysis. International Journal of Hospitality Management, 117, 103633. https://doi.org/10.1016/j.ijhm.2023.103633
Çano, E., & Morisio, M. (2017). Hybrid recommender systems: A systematic literature review. Intelligent Data Analysis, 21(6), 1487–1524. https://doi.org/10.3233/ida-163209
Chaudhari, K., & Thakkar, A. (2019). A comprehensive survey on travel recommender systems. Archives of Computational Methods in Engineering, 27(5), 1545–1571. https://doi.org/10.1007/s11831-019-09363-7
Choi, I. Y., Ryu, Y. U., & Kim, J. K. (2021). A recommender system based on personal constraints for smart tourism city. Asia Pacific Journal of Tourism Research, 26(4), 440–453. https://doi.org/10.1080/10941665.2019.1592765
Chouiref, Z., & Hayi, M. Y. (2022). Toward preference and context-aware hybrid tourist recommender system based on machine learning techniques. Revue d’Intelligence Artificielle, 36(2), 195–208. https://doi.org/10.18280/ria.360203
Cibilić, I., Poslončec-Petrić, V., & Tominić, K. (2021). Implementing augmented reality in tourism. In the Proceedings of the ICA, 4, 1–5. https://doi.org/10.5194/ica-proc-4-21-2021
Dara, S., Chowdary, C. R., & Kumar, C. (2019). A survey on group recommender systems. Journal of Intelligent Information Systems, 54(2), 271–295. https://doi.org/10.1007/s10844-018-0542-3
De Pessemier, T., Dhondt, J., Vanhecke, K., & Martens, L. (2015). Travelwithfriends: A hybrid group recommender system for travel destinations. In Workshop on Tourism Recommender Systems (Tours15), In Conjunction with the 9th ACM Conference on Recommender Systems (RECSYS 2015) (pp. 51-60).
El Yebdri, Z., Benslimane, S. M., Lahfa, F., Barhamgi, M., & Benslimane, D. (2021). Context-aware recommender system using trust network. Computing, 103(9), 1919–1937. https://doi.org/10.1007/s00607-020-00876-9
Esmaeili, L., Mardani, S., Golpayegani, S. A. H., & Madar, Z. Z. (2020). A novel tourism recommender system in the context of social commerce. Expert Systems with Applications, 149, 113301. https://doi.org/10.1016/j.eswa.2020.113301
Fayyaz, Z., Ebrahimian, M., Nawara, D., Ibrahim, A., & Kashef, R. (2020). Recommendation systems: Algorithms, challenges, metrics, and business opportunities. Applied Sciences, 10(21), 7748. https://doi.org/10.3390/app10217748
Filieri, R. (2015). What makes online reviews helpful? A diagnosticity-adoption framework to explain informational and normative influences in e-WOM. Journal of Business Research, 68(6), 1261–1270. https://doi.org/10.1016/j.jbusres.2014.11.006
Filieri, R., Açikgöz, F., Ndou, V., & Dwivedi, Y. K. (2020). Is TripAdvisor still relevant? The influence of review credibility, review usefulness, and ease of use on consumers’ continuance intention. International Journal of Contemporary Hospitality Management, 33(1), 199–223. https://doi.org/10.1108/ijchm-05-2020-0402
Font, X., Torres-Delgado, A., Crabolu, G., Palomo Martinez, J., Kantenbacher, J., & Miller, G. (2021). The impact of sustainable tourism indicators on Destination Competitiveness: The European Tourism Indicator System. Journal of Sustainable Tourism, 31(7), 1608–1630. https://doi.org/10.1080/09669582.2021.1910281
Fu, C. Y., Hu, M. C., Lai, J. H., Wang, H., & Wu, J. L. (2014). Travelbuddy: interactive travel route recommendation with a visual scene interface. In MultiMedia Modeling: 20th Anniversary International Conference, MMM 2014, Dublin, Ireland, January 6-10, 2014, Proceedings, Part I 20 (pp. 219-230). Springer International Publishing. https://doi.org/10.1007/978-3-319-04114-8_19
Gaggi, O. (2013). Discovering local attractions from geo-tagged photos. In Proceedings of the 28th Annual ACM Symposium on Applied Computing (pp. 730-735). https://doi.org/10.1145/2480362.2480502
Garcia, A., Torre, I., & Linaza, M. T. (2013). Mobile Social Travel Recommender System. In Z. Xiang & I. Tussyadiah (Eds.), Information and Communication Technologies in Tourism 2014 (pp. 3–16). Springer International Publishing. https://doi.org/10.1007/978-3-319-03973-2_1
Garcia, I., Sebastia, L., & Onaindia, E. (2011). On the design of individual and group recommender systems for tourism. Expert Systems with Applications, 38(6), 7683–7692. https://doi.org/10.1016/j.eswa.2010.12.143
Gavalas, D., & Kenteris, M. (2011). A web-based pervasive recommendation system for mobile tourist guides. Personal and Ubiquitous Computing, 15(7), 759–770. https://doi.org/10.1007/s00779-011-0389-x
Gemmell, J., Schimoler, T., Mobasher, B., & Burke, R. (2012). Resource recommendation in social annotation systems: A linear-weighted hybrid approach. Journal of Computer and System Sciences, 78(4), 1160–1174. https://doi.org/10.1016/j.jcss.2011.10.006
Goldberg, D. T., Nichols, D. M., Oki, B. M., & Terry, D. B. (1992). Using collaborative filtering to weave an information tapestry. Communications of the ACM, 35(12), 61–70. https://doi.org/10.1145/138859.138867
Gonzalo-Alonso, J., De Juan, P., Garcí-A-Hortelano, E., & Iglesias, C. Á. (2009). A hybrid collaborative filtering system for contextual recommendations in social networks. In Lecture notes in computer science (pp. 393–400). https://doi.org/10.1007/978-3-642-04747-3_31
Gretzel, U. (2011). Intelligent systems in tourism: A social science perspective. Annals of tourism research, 38(3), 757-779. https://doi.org/10.1016/j.annals.2011.04.014
Guo, Q., Zhuang, F., Qin, C., Zhu, H., Xie, X., Xiong, H., & He, Q. (2020). A Survey on Knowledge Graph-Based Recommender Systems (arXiv:2003.00911). arXiv. http://arxiv.org/abs/2003.00911
Gupta, G., & Katarya, R. (2020). Research on understanding the effect of deep learning on user preferences. Arabian Journal for Science and Engineering, 46(4), 3247–3286. https://doi.org/10.1007/s13369-020-05112-2
Gürel, E. (2017). Swot analysis: A theoretical review. Journal of International Social Research, 10(51), 994–1006. https://doi.org/10.17719/jisr.2017.1832
Hall, C. M., Gößling, S., & Scott, D. (2015). The evolution of sustainable development and sustainable tourism. In The Routledge handbook of tourism and sustainability (pp. 16–35). Routledge. https://doi.org/10.4324/9780203072332.ch2
Hamid, R. A., Albahri, A. S., Alwan, J. K., Al-Qaysi, Z., Albahri, O. S., Zaidan, A. A., Alnoor, A., Alamoodi, A. H., & Zaidan, B. B. (2021). How smart is e-tourism? A systematic review of smart tourism recommendation system applying data management. Computer Science Review, 39, 100337. https://doi.org/10.1016/j.cosrev.2020.100337
He, J., & Chu, W. W. (2010). A social network-based Recommender System (SNRS). Data Mining for Social Network Data, 47–74. https://doi.org/10.1007/978-1-4419-6287-4_4
Huang, S., Wu, X., Wu, X., & Wang, K. (2023). Sentiment analysis algorithm using contrastive learning and adversarial training for poi recommendation. Social Network Analysis and Mining, 13(1), 75. https://doi.org/10.1007/s13278-023-01076-x
Jain, D., Mistry, G., Inchanalkar, T., Dholakia, R., Dalal, J., & Rote, U. (2021). Travel buddy: Travel companion using knowledge graph attention networks. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3867158
Javed, U., Shaukat, K., A. Hameed, I., Iqbal, F., Mahboob Alam, T., & Luo, S. (2021). A Review of Content-Based and Context-Based Recommendation Systems. International Journal of Emerging Technologies in Learning (iJET), 16(03), 274. https://doi.org/10.3991/ijet.v16i03.18851
Kbaier, M. E. B. H., Masri, H., & Krichen, S. (2017). A Personalized Hybrid Tourism Recommender System. 2017 IEEE/ACS 14th International Conference on Computer Systems and Applications (AICCSA), 244–250. https://doi.org/10.1109/AICCSA.2017.12
Kontogianni, A., & Alepis, E. (2020). Smart tourism: State of the art and literature review for the last six years. Array, 6, 100020. https://doi.org/10.1016/j.array.2020.100020
Lathia, N., Hailes, S., & Capra, L. (2009). Temporal collaborative filtering with adaptive neighbourhoods. In Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval, 796–797. https://doi.org/10.1145/1571941.1572133
Li, L., Chu, W., Langford, J., & Schapire, R. E. (2010). A contextual-bandit approach to personalized news article recommendation. In Proceedings of the 19th international conference on World wide web (pp. 661-670). https://doi.org/10.1145/1772690.1772758
Liang, T., He, L., Lu, C.-T., Chen, L., Yu, P. S., & Wu, J. (2017). A broad learning approach for context-aware mobile application recommendation. In 2017 IEEE International Conference on Data Mining (ICDM). https://doi.org/10.1109/icdm.2017.121
Lin, K., Yang, S., & Na, S.-G. (2022). Collaborative Filtering Algorithm-Based Destination Recommendation and Marketing Model for Tourism Scenic Spots. Computational Intelligence and Neuroscience, 2022, 1–7. https://doi.org/10.1155/2022/7115627
Logesh, R., & Subramaniyaswamy, V. (2019). Exploring Hybrid Recommender Systems for Personalized Travel Applications. In P. K. Mallick, V. E. Balas, A. K. Bhoi, & A. F. Zobaa (Eds.), Cognitive Informatics and Soft Computing (Vol. 768, pp. 535–544). Springer Singapore. https://doi.org/10.1007/978-981-13-0617-4_52
Logesh, R., Subramaniyaswamy, V., & Vijayakumar, V. (2018). A personalised travel recommender system utilising social network profile and accurate GPS data. Electronic Government, 14(1), 90. https://doi.org/10.1504/eg.2018.089538
Lorenzi, F., Loh, S., & Abel, M. (2011). PersonalTour: A recommender system for travel packages. In 2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology (Vol. 2, pp. 333-336). IEEE. https://doi.org/10.1109/WI-IAT.2011.69
Mahdi, A. J., & Esztergár-Kiss, D. (2023). Supporting scheduling decisions by using genetic algorithm based on tourists’ preferences. Applied Soft Computing, 148, 110857. https://doi.org/10.1016/j.asoc.2023.110857
Manggopa, H. K., Komansilan, T., Kumajas, S., & Batmetan, J. R. (2022). Augmented Reality for Geospatial in E-Tourism: Current status, research trends, and future directions. International Journal of Information Technology and Education, 1(3), 38–55. https://doi.org/10.62711/ijite.v1i3.58
Masthoff, J. (2005). The pursuit of satisfaction: affective state in group recommender systems. In International Conference on User Modeling (pp. 297-306). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/11527886_39
Mathew, P. V. (2022). Sustainable tourism development: discerning the impact of responsible tourism on community well-being. Journal of Hospitality and Tourism Insights, 5(5), 987-1001. https://doi.org/10.1108/JHTI-02-2021-0052
Menk, A., Sebastia, L., & Ferreira, R. (2019). Recommendation systems for tourism based on social networks: A survey. arXiv preprint arXiv:1903.12099. https://doi.org/10.48550/arXiv.1903.12099
Namugenyi, C., Nimmagadda, S. L., & Reiners, T. (2019). Design of a SWOT Analysis Model and its Evaluation in Diverse Digital Business Ecosystem Contexts. Procedia Computer Science, 159, 1145–1154. https://doi.org/10.1016/j.procs.2019.09.283
Noshad, Z., Bouyer, A., & Noshad, M. (2021). Mutual information-based recommender system using autoencoder. Applied Soft Computing, 109, 107547. https://doi.org/10.1016/j.asoc.2021.107547
Öğüt, H., & Onur Taş, B. K. (2012). The influence of internet customer reviews on the online sales and prices in hotel industry. The Service Industries Journal, 32(2), 197–214. https://doi.org/10.1080/02642069.2010.529436
Ojagh, S., Malek, M. R., Saeedi, S., & Liang, S. (2020). A location-based orientation-aware recommender system using IOT smart devices and social networks. Future Generation Computer Systems, 108, 97–118. https://doi.org/10.1016/j.future.2020.02.041
Olshannikova, E., Olsson, T., Huhtamäki, J., & Kärkkäinen, H. (2017). Conceptualizing big social data. Journal of Big Data, 4(1), 1-19. https://doi.org/10.1186/s40537-017-0063-x
Partridge, M., & Calvo, R. A. (1998). Fast dimensionality reduction and simple PCA. Intelligent Data Analysis, 2(3), 203–214. https://doi.org/10.1016/s1088-467x(98)00024-9
Pazzani, M. J., & Billsus, D. (2007). Content-based recommendation systems. In The adaptive web: methods and strategies of web personalization (pp. 325-341). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-72079-9_10
Pérez-Almaguer, Y., Yera, R., Alzahrani, A. A., & Martínez, L. (2021). Content-based group recommender systems: A general taxonomy and further improvements. Expert Systems with Applications, 184, 115444. https://doi.org/10.1016/j.eswa.2021.115444
Pérez-Núñez, P., Luaces, O., Bahamonde, A., & Díez, J. (2019). Improving recommender systems by encoding items and user profiles considering the order in their consumption history. Progress in Artificial Intelligence (Zeitschrift. Print), 9(1), 67–75. https://doi.org/10.1007/s13748-019-00199-7
Pessemier, T. D., Dhondt, J., & Martens, L. (2017). Hybrid group recommendations for a travel service. Multimedia Tools and Applications, 76(2), 2787–2811. https://doi.org/10.1007/s11042-016-3265-x
Ravi, L., & Vairavasundaram, S. (2016). A Collaborative Location Based Travel Recommendation System through Enhanced Rating Prediction for the Group of Users. Computational Intelligence and Neuroscience, 2016, 1–28. https://doi.org/10.1155/2016/1291358
Ravi, L., Subramaniyaswamy, V., Vijayakumar, V., Chen, S., Karmel, A., & Devarajan, M. (2019). Hybrid Location-based Recommender System for Mobility and Travel Planning. Mobile Networks and Applications, 24(4), 1226–1239. https://doi.org/10.1007/s11036-019-01260-4
Ren, X., Song, M., Haihong, E., & Song, J. (2017). Context-aware probabilistic matrix factorization modeling for point-of-interest recommendation. Neurocomputing, 241, 38–55. https://doi.org/10.1016/j.neucom.2017.02.005
Resnick, P., & Varian, H. R. (1997). Recommender systems. Communications of the ACM, 40(3), 56-58. https://doi.org/10.1145/245108.245121
Richa, N., & Bedi, P. (2019). Parallel context-aware multi-agent tourism recommender system. International Journal of Computational Science and Engineering, 20(4), 536. https://doi.org/10.1504/ijcse.2019.104440
Sarkar, J. L., & Majumder, A. (2022). gTour: Multiple itinerary recommendation engine for group of tourists. Expert Systems with Applications, 191, 116190. https://doi.org/10.1016/j.eswa.2021.116190
Sarkar, J. L., Majumder, A., Panigrahi, C. R., Roy, S., & Pati, B. (2022). Tourism recommendation system: a survey and future research directions. Multimedia Tools and Applications, 82(6), 8983–9027. https://doi.org/10.1007/s11042-022-12167-w
Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001). Item-based collaborative filtering recommendation algorithms. Proceedings of the 10th International Conference on World Wide Web, 285–295. https://doi.org/10.1145/371920.372071
Sharma, K., Lee, Y.-C., Nambi, S., Salian, A., Shah, S., Kim, S.-W., & Kumar, S. (2024). A Survey of Graph Neural Networks for Social Recommender Systems. https://doi.org/10.1145/3661821
Sharpley, R. (2020). Tourism, Sustainable Development and the theoretical divide: 20 Years on. Journal of Sustainable Tourism, 28(11), 1932–1946. https://doi.org/10.1080/09669582.2020.1779732
Su, X., Sperli, G., Moscato, V., Picariello, A., Esposito, C., & Choi, C. (2019). An edge intelligence empowered recommender system enabling cultural heritage applications. IEEE Transactions on Industrial Informatics, 15(7), 4266–4275. https://doi.org/10.1109/tii.2019.2908056
Sun, Y.-Y., Lin, P.-C., & Higham, J. (2020). Managing tourism emissions through optimizing the Tourism Demand Mix: Concept and analysis. Tourism Management, 81, 104161. https://doi.org/10.1016/j.tourman.2020.104161
Takács, G., & Tikk, D. (2012). Alternating least squares for personalized ranking. In Proceedings of the Sixth ACM conference on Recommender systems (pp. 83-90). https://doi.org/10.1145/2365952.2365972
Tarek, I. H., Munna, F. U., Mojumder, A. T., Rahman, M. M., Hossain, M. S., & Andersson, K. (2022). A Hybrid Hotel recommendation using collaborative, content based and knowledge based approach. Intelligent Computing & Optimization, 1049–1057. https://doi.org/10.1007/978-3-031-19958-5_98
Valdivia, A., Hrabova, E., Chaturvedi, I., Luzón, M. V., Troiano, L., Wang, Z., & Herrera, F. (2019). Inconsistencies on TripAdvisor reviews: A unified index between users and sentiment analysis methods. Neurocomputing, 353, 3–16. https://doi.org/10.1016/j.neucom.2018.09.096
Vargas, S., & Castells, P. (2013). Exploiting the diversity of user preferences for recommendation. In Proceedings of the 10th conference on open research areas in information retrieval (pp. 129-136). https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=3ecc3ee0517907a0882f066502f734433720c39e
Vekariya, V., & Kulkarni, G. R. (2012). Notice of violation of IEEE publication principles - Hybrid recommender systems: Survey and experiments. In 2012 Second International Conference on Digital Information and Communication Technology and It’s Applications (DICTAP), 469–473. https://doi.org/10.1109/DICTAP.2012.6215409
Wang, J., Wu, N., & Zhao, X. (2022). Personalized route recommendation with neural network enhanced search algorithm. IEEE Transactions on Knowledge and Data Engineering (Print), 34(12), 5910–5924. https://doi.org/10.1109/tkde.2021.3068479
Wang, W., Zhang, G., & Lu, J. (2016). Member contribution-based group recommender system. Decision Support Systems, 87, 80–93. https://doi.org/10.1016/j.dss.2016.05.002
Wilcox, J. (2022). How can we get more accurate: Recommendations about human judgment. SpringerBriefs in Psychology, 113–133. https://doi.org/10.1007/978-3-031-19205-0_8
Xiang, Z., Du, Q., Ma, Y., & Fan, W. (2017). A comparative analysis of major online review platforms: Implications for social media analytics in hospitality and tourism. Tourism Management, 58, 51–65. https://doi.org/10.1016/j.tourman.2016.10.001
Xiao, L., Sun, L., Ling, M., & Peng, Y. (2023). A survey of graph neural network based recommendation in social networks. Neurocomputing, 549, 126441. https://doi.org/10.1016/j.neucom.2023.126441
Yang, X., Guo, Y., Liu, Y., & Steck, H. (2014). A survey of collaborative filtering based social recommender systems. Computer Communications, 41, 1–10. https://doi.org/10.1016/j.comcom.2013.06.009
Yin, H., Lu, X., Wang, C., Yu, N., & Zhang, L. (2010). Photo2trip: an interactive trip planning system based on geo-tagged photos. In Proceedings of the 18th ACM international conference on Multimedia (pp. 1579-1582). https://doi.org/10.1145/1873951.1874291
Yochum, P., Chang, L., Gu, T., & Zhu, M. (2020). Linked open data in location-based recommendation system on tourism domain: A survey. IEEE Access, 8, 16409–16439. https://doi.org/10.1109/access.2020.2967120
Yuan, Y., & Zheng, W. (2024). Your trip, your way: An adaptive tourism recommendation system. Applied Soft Computing, 154, 111330. https://doi.org/10.1016/j.asoc.2024.111330
Zeng, L., Guan, J., & Chen, B. (2023). MSBPR: A multi-pairwise preference and similarity based Bayesian personalized ranking method for recommendation. Knowledge-Based Systems, 260, 110165. https://doi.org/10.1016/j.knosys.2022.110165
Zhang, S., Liu, W., Deng, X., Xu, Z., & Choo, K. R. (2018). Micro-blog topic recommendation based on knowledge flow and user selection. Journal of Computational Science, 26, 512–521. https://doi.org/10.1016/j.jocs.2017.10.021
Zhang, S., Yao, L., Sun, A., & Tay, Y. (2020). Deep learning based recommender system: A survey and new perspectives. ACM Computing Surveys, 52(1), 1–38. https://doi.org/10.1145/3285029
Zhou, X., Wang, M., & Li, D. (2017). From stay to play – A travel planning tool based on crowdsourcing user-generated contents. Applied Geography, 78, 1–11. https://doi.org/10.1016/j.apgeog.2016.10.002
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Aderline Song Ke Xin, Huong Yong Ting , Abdulwahab Funsho Atanda (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.