Enhancing Photovoltaic Panel Inspection using RGB Image-Based Detection and Image Processing Techniques

Enhancing Photovoltaic Panel Inspection using RGB Image-Based Detection and Image Processing Techniques

Authors

  • Suhaili Beeran Kutty Faculty of Electrical Engineering, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus, 81750 Masai, Johor, Malaysia.
  • Mohamad Ad-Fadhil Musa SHB Malaysia Automotive Appliance Sdn. Bhd, Johor, Malaysia.
  • Murizah Kassim Faculty of Electrical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia.
  • Puteri Nor Ashikin Megat Yunus Faculty of Electrical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia.

DOI:

https://doi.org/10.24191/jcrinn.v10i2.528

Keywords:

Photovoltaic Panel Defects, RGB Image Analysis, Image Processing, K-means Clustering, Canny Edge Detection

Abstract

Photovoltaic (PV) panels have become more common in recent years due to their numerous benefits. However, ensuring that PV panels function optimally and reliably is essential for maximizing their efficiency and durability. Identifying and addressing flaws in PV panels is vital to achieving this goal. While thermographic imaging is routinely utilized for defect identification, the potential for using RGB images for this purpose is virtually untapped. This paper intends to investigate using RGB images to recognize PV panel defects, proposing a methodology that integrates image processing techniques such as K-means clustering, Canny edge detection, and grayscale conversion. The results show that defects on PV panels may be successfully discovered by applying K-means clustering and Canny edge detection to RGB images with an accuracy of 90.66%. This study sheds light on improving defect identification practices in the PV industry.

Downloads

Download data is not yet available.

References

Afifah, A. N. N., Indrabayu, Suyuti, A., & Syafaruddin. (2021). A review on image processing techniques for damage detection on photovoltaic panels. ICIC Express Letters, 15(7), 779–790. http://dx.doi.org/10.24507/icicel.15.07.779

Ali, M. U., Khan, H. F., Masud, M., Kallu, K. D., & Zafar, A. (2020). A machine learning framework to identify the hotspot in photovoltaic module using infrared thermography. Solar Energy, 208, 643–651. https://doi.org/10.1016/j.solener.2020.08.027

Al-Waisy, A. S., Ibrahim, D. A., Zebari, D. A., Hammadi, S., Mohammed, H., Mohammed, M. A., & Damaševičius, R. (2022). Identifying defective solar cells in electroluminescence images using deep feature representations. PeerJ Computer Science, 8, e992. https://doi.org/10.7717/peerj-cs.992

Amali, N. A. K., Yahya, N., Taib, M. A. M., Tan, G. J., & Yusof, E. M. M. (2024). Developing a web-based visualization tool for solar energy awareness in Malaysia. Journal of Computing Research and Innovation, 9(2), 396-417. https://doi.org/10.24191/jcrinn.v9i2.466

Espinosa, A. R., Bressan, M., & Giraldo, L. F. (2020). Failure signature classification in solar photovoltaic plants using RGB images and convolutional neural networks. Renewable Energy, 162, 249–256. https://doi.org/10.1016/j.renene.2020.07.154

Et-taleby, A., Chaibi, Y., Ayadi, N., Elkari, B., Benslimane, M., & Chalh, Z. (2025). Enhancing fault detection and classification in photovoltaic systems based on a hybrid approach using fuzzy logic algorithm and thermal image processing. Scientific African, 28, e02684. https://doi.org/10.1016/j.sciaf.2025.e02684

Fadzli, W. M. R. W., Dak, A. Y., & Razak, T. R. (2024). A survey on various edge detection techniques in image processing and applied disease detection. Journal of Computing Research and Innovation, 9(2), 23-32. https://doi.org/10.24191/jcrinn.v9i2.415

Guan, Y., Wu, G., Huang, W., Yan, J., Wang, L., & Yi, Y. (2023). Gray level co-occurrence matrix-based defect detection method for photovoltaic power plant panels. In Proceedings of 2023 International Conference on Computers, Information Processing and Advanced Education CIPAE 2023 (pp. 703-707). IEEE. https://doi.org/10.1109/CIPAE60493.2023.00136

Han, S., Kamaruddin, B. H. B., Shi, X., & Zhu, J. (2025). Achieving energy resilience: Studying renewable and fossil fuel energy generation drivers and COPE-28 pathways of China. Energy Strategy Reviews, 58, 101669. https://doi.org/10.1016/j.esr.2025.101669

Kuo, C. F. J., Chen, S. H., & Huang, C. Y. (2023). Automatic detection, classification and localization of defects in large photovoltaic plants using unmanned aerial vehicles (UAV) based infrared (IR) and RGB imaging. Energy Conversion and Management, 276, 116495. https://doi.org/10.1016/j.enconman.2022.116495

Obaideen, K., AlMallahi, M. N., Alami, A. H., Ramadan, M., Abdelkareem, M. A., Shehata, N., & Olabi, A. G. (2021). On the contribution of solar energy to sustainable developments goals: Case study on Mohammed bin Rashid Al Maktoum Solar Park. International Journal of Thermofluids, 12, 100123. https://doi.org/10.1016/j.ijft.2021.100123

Osmani, K., Haddad, A., Lemenand, T., Castanier, B., Alkhedher, M., & Ramadan, M. (2023). A critical review of PV systems’ faults with the relevant detection methods. Energy Nexus, 12, 100257. https://doi.org/10.1016/j.nexus.2023.100257

Othman, N. S., Ramli, S., Kamarudin, N. D., Mohamad, A. U., & Ong, A. T. (2024). Classification of defect photovoltaic panel images using matrox imaging library for machine vision application. International Journal on Informatics Visualization, 8(3-2), 1528–1535. https://dx.doi.org/10.62527/joiv.8.3-2.2182

Patel, A. V., McLauchlan, L., & Mehrubeoglu, M. (2020, December). Defect detection in PV arrays using image processing. In 2020 International Conference on Computational Science and Computational Intelligence (CSCI) (pp. 1653–1657). IEEE. https://doi.org/10.1109/CSCI51800.2020.00304

Purwadi, Abu, N. A., Mohd, O. B., & Kusuma, B. A. (2023). Mixed pixel classification on hyperspectral image using imbalanced learning and hyperparameter tuning methods. International Journal on Informatics Visualization, 7(3), 910-919. https://doi.org/10.30630/joiv.7.3.1758

Prabhakaran, S., Uthra, R. A., & Preetharoselyn, J. (2023). Deep learning-based model for defect detection and localization on photovoltaic panels. Computer Systems Science and Engineering, 44(3), 2683–2700. https://doi.org/10.32604/csse.2023.028898

Qasem, H., Mnatsakanyan, A., & Banda, P. (2016, June). Assessing dust on PV modules using image processing techniques. In 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC) (pp. 2066–2070). IEEE. https://doi.org/10.1109/PVSC.2016.7749993

Salamanca, S., Merchán, P., & García, I. (2017, July). On the detection of solar panels by image processing techniques. In 2017 25th Mediterranean Conference on Control and Automation (MED) (pp. 478-483). IEEE. https://doi.org/10.1109/MED.2017.7984163

Shahsavari, A., & Akbari, M. (2018). Potential of solar energy in developing countries for reducing energy-related emissions. Renewable and Sustainable Energy Reviews, 90, 275–291. https://doi.org/10.1016/j.rser.2018.03.065

Wang, X., Yang, W., Qin, B., Wei, K., Ma, Y., & Zhang, D. (2022a). Intelligent monitoring of photovoltaic panels based on infrared detection. Energy Reports, 8, 5005–5015. https://doi.org/10.1016/j.egyr.2022.03.173

Wang, Q., Paynabar, K., & Pacella, M. (2022b). Online automatic anomaly detection for photovoltaic systems using thermography imaging and low rank matrix decomposition. Journal of Quality Technology, 54(5), 503–516. https://doi.org/10.1080/00224065.2021.1948372

Zyout, I., & Oatawneh, A. (2020, February). Detection of PV solar panel surface defects using transfer learning of the deep convolutional neural networks. In 2020 Advances in Science and Engineering Technology International Conferences (ASET) (pp. 1-4). IEEE. https://doi.org/10.1109/aset48392.2020.9118384

Downloads

Published

2025-09-01

How to Cite

Beeran Kutty, S., Musa, M. A.-F., Kassim, M., & Megat Yunus, P. N. A. (2025). Enhancing Photovoltaic Panel Inspection using RGB Image-Based Detection and Image Processing Techniques. Journal of Computing Research and Innovation, 10(2), 255–265. https://doi.org/10.24191/jcrinn.v10i2.528

Issue

Section

General Computing
Loading...