Enhancing Pineapple Cultivar Classification: A Framework for Image Quality, Feature Extraction, and Algorithmic Refinement

Enhancing Pineapple Cultivar Classification: A Framework for Image Quality, Feature Extraction, and Algorithmic Refinement

Authors

  • Mohamad Faizal Ab Jabal Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus, 81750 Masai, Johor, Malaysia. https://orcid.org/0000-0002-1137-0088
  • Muhammad Irfan Rozlan Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA Terengganu Branch, Kuala Terengganu Campus, 21080, Kuala Terengganu, Terengganu, Malaysia.
  • Azrina Suhaimi Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus, 81750 Masai, Johor, Malaysia.
  • Harshida Hasmy Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus, 81750 Masai, Johor, Malaysia.

DOI:

https://doi.org/10.24191/jcrinn.v10i2.546

Keywords:

Autonomous Agriculture, Colour Feature, Feature Extraction, Pineapple Classification, Pineapple Cultivar

Abstract

Accurate classification of pineapple cultivars is hindered by limitations in image acquisition, feature extraction, and classification algorithms. This study identifies these technical challenges and proposes methodological improvements to support reliable autonomous recognition systems. Key findings reveal deficiencies in current image datasets, leading to a proposed standardised acquisition protocol involving consistent lighting, optimal camera positioning, and suitable file formats. The HSV colour space is validated as more effective for extracting skin features, with its threshold values and post-processing steps significantly reducing classification errors. The proposed algorithmic refinements integrate chromatic and morphological attributes, particularly surface area and optimise logical operators to enhance accuracy. The study addresses two main research gaps: precise quantification of skin colour and the development of robust classification frameworks. Future work will emphasise empirical validation and the deployment of the YOLOv7 model for real-time, on-site assessment of fruit maturity in field conditions. These contributions hold strong implications for advancing precision agriculture and improving post-harvest processing.

Downloads

Download data is not yet available.

References

Arboleda, E., Jesus, C., & Tia, L. (2021). Pineapple maturity classifier using image processing and fuzzy logic. IAES International Journal of Artificial Intelligence (IJ-AI), 10(4), 830–838. https://doi.org/10.11591/ijai.v10.i4.pp830-838

Cai, J., Tao, J., Ma, Y., Fan, X., & Cheng, L. (2020). Fruit image recognition and classification method based on improved single shot multi-box detectors. Journal of Physics: Conference Series, 1629(1), 012010. https://doi.org/10.1088/1742-6596/1629/1/012010

Chang, H., Meng, Q., Wu, Z., Tang, L., Qiu, Z., Ni, C., Chu, J., Fang, J., Huang, Y., & Li, Y. (2025). Accurate ripening stage classification of pineapple based on a visible and near-infrared hyperspectral imaging system. Journal of AOAC International, 108(3), 293-303. https://doi.org/10.1093/jaoacint/qsaf010

Chen, Y., Zheng, L., & Peng, H. (2023). Assessing pineapple maturity in complex scenarios using an improved RetinaNet algorithm. Engenharia Agrícola, 43(2), e20220180. https://doi.org/10.1590/1809-4430-eng.agric.v43n2e20220180/2023

KSF Enterprise MD2. (2024). Pembekal benih nanas MD2 [Facebook page]. Facebook. https://www.facebook.com/Ksfenterprisemd2/photos?locale=ms_MY

Jabal, M. F. A., Hamid, S., Othman, N. Z. S., & Rahim, M. S. M. (2022). Spot filtering adaptive thresholding (SFAT) method for early pigment spot detection on iris surface. In Saba, T., Rehman, A., Roy, S. (Eds), Prognostic models in healthcare: AI and statistical approaches (pp. 347–370). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-2057-8_13

Jabal, M. F. A., Abdullah, A. N. H., Najjar, F. H., Hamid, S., Khalid, A. K., & Manan, W. D. W. A. (2024). A novel color feature for the improvement of pigment spot extraction in iris images. Journal of Image and Graphics, 12(4), 410–416. https://doi.org/10.18178/joig.12.4.410-416

Lai, Y., Ma, R., Chen, Y., Wan, T., Jiao, R., & He, H. (2023). A pineapple target detection method in a field environment based on improved YOLOv7. Applied Sciences, 13(4), 2691. https://doi.org/10.3390/app13042691

Li, J., Liu, Y., Li, C., Luo, Q., & Lu, J. (2024). Pineapple detection with YOLOv7-tiny network model improved via pruning and a lightweight backbone sub-network. Remote Sensing, 16(15), 2805. https://doi.org/10.3390/rs16152805

Malaysian Pineapple Industry Board. (2024). Home [Official government website]. https://www.mpib.gov.my/en/home/

Manik, F. Y., Harumy, T. H. F., Akasah, W., Hidayat, W., Simanjuntak, R. F., & Sianturi, V. J. (2024, April 19). Identification of pineapple maturity utilizing digital image using hybrid machine learning method. AIP Conference Proceedings, 2987(1), 020050. https://doi.org/10.1063/5.0199826

Mukhiddinov, M., Muminov, A., & Cho, J. (2022). Improved classification approach for fruits and vegetables freshness based on deep learning. Sensors, 22(21), 8192. https://doi.org/10.3390/s22218192

Roslan, M. I., Ibrahim, Z., Adnan, N. A. K., Diah, N. M., Narawi, N. A. A., & Arif, Y. M. (2023). Fruit detection and recognition using Faster R-CNN with FPN30 pre-trained network. In 2023 IEEE 8th International Conference on Recent Advances and Innovations in Engineering (ICRAIE) (pp. 1–6). IEEE. https://doi.org/10.1109/ICRAIE59459.2023.10468169

Shiu, Y.-S., Lee, R.-Y., & Chang, Y.-C. (2023). Pineapples' detection and segmentation based on Faster and Mask R-CNN in UAV imagery. Remote Sensing, 15(3), 814. https://doi.org/10.3390/rs15030814

Sujitra, A. (2024). Phulae pineapple translucent flesh symptom dataset [Dataset]. Kaggle. https://www.kaggle.com/datasets/sujitraarw/phulae-pineapple-translucency-defect

Trinh, T. H., & Nguyen, H. H. C. (2023). Implementation of YOLOv5 for real-time maturity detection and identification of pineapples. Traitement du Signal, 40(4), 1445–1455. https://doi.org/10.18280/ts.400413

Syazwani, R. W. N., Asraf, H. M., Amin, M. M. S., & Dalila, K. N. (2022). Automated image identification, detection and fruit counting of top-view pineapple crown using machine learning. Alexandria Engineering Journal, 61(2), 1265–1276. https://doi.org/10.1016/j.aej.2021.06.053

Wang, H. H., & Chai, S. Y. (2022). Novel feature extraction for pineapple ripeness classification. Journal of Telecommunications and Information Technology, 1, 14–22. https://doi.org/10.26636/jtit.2022.156021

Downloads

Published

2025-09-01

How to Cite

Ab Jabal, M. F., Rozlan, M. I., Suhaimi, A., & Hasmy, H. (2025). Enhancing Pineapple Cultivar Classification: A Framework for Image Quality, Feature Extraction, and Algorithmic Refinement. Journal of Computing Research and Innovation, 10(2), 216–229. https://doi.org/10.24191/jcrinn.v10i2.546

Issue

Section

General Computing

Most read articles by the same author(s)

Loading...