Enhancing Pineapple Cultivar Classification: A Framework for Image Quality, Feature Extraction, and Algorithmic Refinement
DOI:
https://doi.org/10.24191/jcrinn.v10i2.546Keywords:
Autonomous Agriculture, Colour Feature, Feature Extraction, Pineapple Classification, Pineapple CultivarAbstract
Accurate classification of pineapple cultivars is hindered by limitations in image acquisition, feature extraction, and classification algorithms. This study identifies these technical challenges and proposes methodological improvements to support reliable autonomous recognition systems. Key findings reveal deficiencies in current image datasets, leading to a proposed standardised acquisition protocol involving consistent lighting, optimal camera positioning, and suitable file formats. The HSV colour space is validated as more effective for extracting skin features, with its threshold values and post-processing steps significantly reducing classification errors. The proposed algorithmic refinements integrate chromatic and morphological attributes, particularly surface area and optimise logical operators to enhance accuracy. The study addresses two main research gaps: precise quantification of skin colour and the development of robust classification frameworks. Future work will emphasise empirical validation and the deployment of the YOLOv7 model for real-time, on-site assessment of fruit maturity in field conditions. These contributions hold strong implications for advancing precision agriculture and improving post-harvest processing.
Downloads
References
Arboleda, E., Jesus, C., & Tia, L. (2021). Pineapple maturity classifier using image processing and fuzzy logic. IAES International Journal of Artificial Intelligence (IJ-AI), 10(4), 830–838. https://doi.org/10.11591/ijai.v10.i4.pp830-838
Cai, J., Tao, J., Ma, Y., Fan, X., & Cheng, L. (2020). Fruit image recognition and classification method based on improved single shot multi-box detectors. Journal of Physics: Conference Series, 1629(1), 012010. https://doi.org/10.1088/1742-6596/1629/1/012010
Chang, H., Meng, Q., Wu, Z., Tang, L., Qiu, Z., Ni, C., Chu, J., Fang, J., Huang, Y., & Li, Y. (2025). Accurate ripening stage classification of pineapple based on a visible and near-infrared hyperspectral imaging system. Journal of AOAC International, 108(3), 293-303. https://doi.org/10.1093/jaoacint/qsaf010
Chen, Y., Zheng, L., & Peng, H. (2023). Assessing pineapple maturity in complex scenarios using an improved RetinaNet algorithm. Engenharia Agrícola, 43(2), e20220180. https://doi.org/10.1590/1809-4430-eng.agric.v43n2e20220180/2023
KSF Enterprise MD2. (2024). Pembekal benih nanas MD2 [Facebook page]. Facebook. https://www.facebook.com/Ksfenterprisemd2/photos?locale=ms_MY
Jabal, M. F. A., Hamid, S., Othman, N. Z. S., & Rahim, M. S. M. (2022). Spot filtering adaptive thresholding (SFAT) method for early pigment spot detection on iris surface. In Saba, T., Rehman, A., Roy, S. (Eds), Prognostic models in healthcare: AI and statistical approaches (pp. 347–370). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-2057-8_13
Jabal, M. F. A., Abdullah, A. N. H., Najjar, F. H., Hamid, S., Khalid, A. K., & Manan, W. D. W. A. (2024). A novel color feature for the improvement of pigment spot extraction in iris images. Journal of Image and Graphics, 12(4), 410–416. https://doi.org/10.18178/joig.12.4.410-416
Lai, Y., Ma, R., Chen, Y., Wan, T., Jiao, R., & He, H. (2023). A pineapple target detection method in a field environment based on improved YOLOv7. Applied Sciences, 13(4), 2691. https://doi.org/10.3390/app13042691
Li, J., Liu, Y., Li, C., Luo, Q., & Lu, J. (2024). Pineapple detection with YOLOv7-tiny network model improved via pruning and a lightweight backbone sub-network. Remote Sensing, 16(15), 2805. https://doi.org/10.3390/rs16152805
Malaysian Pineapple Industry Board. (2024). Home [Official government website]. https://www.mpib.gov.my/en/home/
Manik, F. Y., Harumy, T. H. F., Akasah, W., Hidayat, W., Simanjuntak, R. F., & Sianturi, V. J. (2024, April 19). Identification of pineapple maturity utilizing digital image using hybrid machine learning method. AIP Conference Proceedings, 2987(1), 020050. https://doi.org/10.1063/5.0199826
Mukhiddinov, M., Muminov, A., & Cho, J. (2022). Improved classification approach for fruits and vegetables freshness based on deep learning. Sensors, 22(21), 8192. https://doi.org/10.3390/s22218192
Roslan, M. I., Ibrahim, Z., Adnan, N. A. K., Diah, N. M., Narawi, N. A. A., & Arif, Y. M. (2023). Fruit detection and recognition using Faster R-CNN with FPN30 pre-trained network. In 2023 IEEE 8th International Conference on Recent Advances and Innovations in Engineering (ICRAIE) (pp. 1–6). IEEE. https://doi.org/10.1109/ICRAIE59459.2023.10468169
Shiu, Y.-S., Lee, R.-Y., & Chang, Y.-C. (2023). Pineapples' detection and segmentation based on Faster and Mask R-CNN in UAV imagery. Remote Sensing, 15(3), 814. https://doi.org/10.3390/rs15030814
Sujitra, A. (2024). Phulae pineapple translucent flesh symptom dataset [Dataset]. Kaggle. https://www.kaggle.com/datasets/sujitraarw/phulae-pineapple-translucency-defect
Trinh, T. H., & Nguyen, H. H. C. (2023). Implementation of YOLOv5 for real-time maturity detection and identification of pineapples. Traitement du Signal, 40(4), 1445–1455. https://doi.org/10.18280/ts.400413
Syazwani, R. W. N., Asraf, H. M., Amin, M. M. S., & Dalila, K. N. (2022). Automated image identification, detection and fruit counting of top-view pineapple crown using machine learning. Alexandria Engineering Journal, 61(2), 1265–1276. https://doi.org/10.1016/j.aej.2021.06.053
Wang, H. H., & Chai, S. Y. (2022). Novel feature extraction for pineapple ripeness classification. Journal of Telecommunications and Information Technology, 1, 14–22. https://doi.org/10.26636/jtit.2022.156021
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Mohamad Faizal Ab Jabal, Muhammad Irfan Rozlan, Azrina Suhaimi, Harshida Hasmy (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.