Enhancing Group Decision Making with Interval Valued Fuzzy Soft Max–min Method: An Examination in Manpower Recruitment

Enhancing Group Decision Making with Interval Valued Fuzzy Soft Max–min Method: An Examination in Manpower Recruitment

Authors

  • Samsiah Abdul Razak College of Computing, Informatics and Mathematics, Universiti Teknologi MARA, Cawangan Perak, Kampus Tapah, 35400 Tapah Road, Perak, Malaysia
  • Ini Imaina Abdullah College of Computing, Informatics and Mathematics, Universiti Teknologi MARA, Cawangan Perak, Kampus Tapah, 35400 Tapah Road, Perak, Malaysia
  • Nur Azila Yahya College of Computing, Informatics and Mathematics, Universiti Teknologi MARA, Cawangan Perak, Kampus Tapah, 35400 Tapah Road, Perak, Malaysia

DOI:

https://doi.org/10.24191/jcrinn.v9i2.464

Keywords:

Fuzzy Soft Set, Fuzzy Soft Matrix, Interval Valued Fuzzy Soft Max- Min Decision-Making (IVFSMmDM), Fuzzy Analytic Hierarchy Process (FAHP), Lambda-Max Method, Manpower Recruitment

Abstract

Maji et al. expanded on soft set theory by introducing fuzzy soft set theory, offering a versatile approach for tackling problems marked by uncertainty and fuzziness, while effectively modelling and representing data. The authors developed a matrix representation within this fuzzy soft set framework and explored various properties of these matrices. Despite this, existing applications of interval-valued fuzzy soft matrices in group decision-making often assume equal importance for all criteria, which fails to capture the true preferences of decision-makers.

This study proposes a novel approach to group decision-making through the Interval Valued Fuzzy Soft Max-min Decision-Making Method (IVFSMmDM), which considers the varying importance of each criterion, followed by using the Fuzzy Soft Max-min decision-making technique to prioritize decisions. The integration of these methods provides a more accurate and practical decision-making framework.

The effectiveness of IVFSMmDM is illustrated through a detailed numerical example in the context of manpower recruitment, involving the selection of 7 programmers for a software development organization’s team. The results indicate that Programmer 5 was chosen, achieving the highest-ranking value of (0.019, 0.021). This highlights the practical utility and effectiveness of the Interval Valued Fuzzy Soft Max-min Decision-Making Method in real-world decision-making scenarios.

Downloads

Download data is not yet available.

References

Ali, M., & Kılıçman, A. (2021). On interval-valued fuzzy soft preordered sets and associated applications in decision- making. Mathematics, 9(23), 3142. https://doi.org/10.3390/math9233142

Abdul, R., & Musher, A. (2020). Application of interval valued fuzzy set and soft set. Jnanabha, 50(2), 114-121. https://doi.org/10.58250/jnanabha.2020.50

Cagman, N., & Enginoglu, S. (2012). Fuzzy soft matrix theory and its application in decision making. Iranian Journal of Fuzzy Systems, 9(1), 109-119. https://ijfs.usb.ac.ir/article_229_b6d292816ccde2e91d91920714cb6245.pdf

Chaudhuri, A., De, K., & Chatterjee, D. (2013). Solution of the decision-making problems using fuzzy soft relations. arXiv preprint arXiv:1304.7238. https://doi.org/10.48550/arXiv.1304.7238

Csutora, R., & Buckley, J. J. (2001). Fuzzy hierarchical analysis: The Lambda – Max method. Fuzzy sets and Systems, 120(2), 181-195. https://doi.org/10.1016/S0165-0114(99)00155-4

Das, A. K., Granados, C., & Bhattacharya, J. (2022). Some new operations on fuzzy soft sets and their applications in decision-making. Songklanakarin Journal of Science and Technology, 44(2), 440-449. https://sjst.psu.ac.th/journal/44-2/21.pdf

Enginoğlu, S., & Memiş, S. (2020). A new approach to the criteria-weighted fuzzy soft max-min decision-making method and its application to a performance-based value assignment problem. Journal of New Results in Science, 9(1), 19-36. https://dergipark.org.tr/en/pub/jnrs/issue/53974/709375

Feng, F., Cho, J., Pedrycz, W., Fujita, H., & Herawan, T. (2016). Soft set-based association rule mining. Knowledge-Based Systems, 111, 268-282. https://doi.org/10.1016/j.knosys.2016.08.020

Feng, F., Wang, Q., Yager, R. R., Alcantud, J. C. R., & Zhang, L. (2020). Maximal association analysis using logical formulas over soft sets. Expert Systems with Applications, 159, 113557. https://doi.org/10.1016/j.eswa.2020.113557

França, L. C. D. J., Mucida, D. P., Santana, R. C., de Morais, M. S., Gomide, L. R., & Bateira, C. V. D. M. (2020). AHP approach applied to multi-criteria decisions in environmental fragility mapping. Floresta, 50(3), 1623-1632.

Guo, X., & Kapucu, N. (2020). Assessing social vulnerability to earthquake disaster using rough analytic hierarchy process method: A case study of Hanzhong City, China. Safety Science, 125, 104625. https://doi.org/10.1016/j.ssci.2020.104625

Han, Y., Wang, Z., Lu, X., & Hu, B. (2020). Application of AHP to road selection. ISPRS International Journal of Geo-Information, 9(2), 86. https://doi.org/10.3390/ijgi9020086

Khalil, A. M., & Hassan, N. (2019). Inverse fuzzy soft set and its application in decision making. International Journal of Information and Decision Sciences, 11(1), 73-92. https://doi.org/10.1504/IJIDS.2019.096630

Kong, Z., Zhao, J., Wang, L., & Zhang, J. (2021). A new data filling approach based on probability analysis in incomplete soft sets. Expert Systems with Applications, 184, 115358 https://doi.org/10.1016/j.eswa.2021.115358

Lambodharan,V., Anitha. N. (2019). Interval valued fuzzy soft sets and fuzzy connectives. International Journal of Recent Technology and Engineering, 8(4), 2277-3878. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=22332842c0cd25b2b32d420b038852f170f70983

Liu, Y. W., & Kwon, Y. J. (2007, August). A Fuzzy AHP approach to evaluating e-commerce websites. In 5th Acis International Conference on Software Engineering Research, Management & Applications (Sera 2007) (pp. 114-124). IEEE Xplore. https://doi.org/10.1109/SERA.2007.16

Maharana, M., & Mohanty, D. (2021). An application of soft set theory in decision making problem by parameterization reduction. Soft Computing, 25(5), 3989-3992. https://doi.org/10.1007/s00500-020-05420-7

Maji, P. K., Roy, A. R., & Biswas, R. (2002). An application of soft sets in a decision-making problem. Computers & Mathematics with Applications, 44(8-9), 1077-1083. https://core.ac.uk/download/pdf/82179651.pdf

Qin, H., Fei, Q., Ma, X., & Chen, W. (2021). A new parameter reduction algorithm for soft sets based on chi-square test. Applied Intelligence, 51, 7960-7972. https://doi.org/10.1007/s10489-021-02265-x

Qin, H., Wang, Y., Ma, X., & Wang, J. (2021). A novel approach to decision making based on interval-valued fuzzy soft Set. Symmetry, 13(12), 2274. https://doi.org/10.3390/sym13122274

Qin, H., & Ma, X. (2018). A complete model for evaluation system based on interval-valued fuzzy soft set. IEEE Access, 6, 35012-35028.

Razak, S. A., & Mohamad, D. (2012). An Application of Soft Matrices in Group Decision Making Problems (Aplikasi Matrik Lembut dalam Masalah Pembuatan Keputusan secara Berkumpulan). Menemui Matematik (Discovering Mathematics), 34(1), 33-40. https://myjms.mohe.gov.my/index.php/dismath/article/view/13672

Razak, S. A., & Mohamad, D. (2013). A decision-making method using fuzzy soft sets. Malaysian Journal of Fundamental and Applied Sciences, 9(2). https://doi.org/10.11113/mjfas.v9n2.91

Razak, S. A., Mohamad, D., & Abdullah, I. I. (2017). A group decision making problem using hierarchical based fuzzy soft matrix approach. International Journal of Advanced and Applied Sciences, 4(10), 26-32.

Saaty, T. L. (1980). The analytic hierarchy process (AHP). The Journal of the Operational Research Society, 41(11), 1073-1076.

Sai, B. V. S. T. (2020). Applications of soft set-in decision-making problems. Global Journal of Pure and Applied Mathematics, 16(2), 305-324. http://dx.doi.org/10.37622/GJPAM/16.2.2020.305-324

Shagari,S. M., Azam.A, (2020). An algorithm for fuzzy soft set-based decision-making approach. Yugoslav Journal of Operations Research, 30(00), 26-26. https://doi.org/10.2298/YJOR190715026M

Shanthi, S. A., & Gayathri, M. (2020). Interval valued picture fuzzy soft set-in pattern recognition. Adv. Mathematics: Scientific J., 9(4), 2019-2029. https://doi.org/10.37418/amsj.9.4

Silambarasan, I. (2021). Hamacher operations of Fermatean fuzzy matrices. Applications and Applied Mathematics: An International Journal (AAM), 16(1), 15. https://digitalcommons.pvamu.edu/aam/vol16/iss1/15

Sooraj, T. R., & Tripathy, B. K. (2017). Interval valued hesitant fuzzy soft sets and its application in stock market analysis. In Artificial Intelligence and Evolutionary Computations in Engineering Systems: Proceedings of ICAIECES 2016 (pp. 755-764). Springer Singapore.

Tripathy, B. K., Sooraj, T. R., & Mohanty, R. N. (2019). Application of soft set-in game theory. In Advanced Methodologies and Technologies in Artificial Intelligence, Computer Simulation, and Human-Computer Interaction (pp. 421-435). IGI global.

Van Laarhoven, P. J., & Pedrycz, W. (1983). A fuzzy extension of Saaty's priority theory. Fuzzy sets and Systems, 11(1-3), 229-241. https://doi.org/10.1016/S0165-0114(83)80082-7

Cheng, C. H., Wang, J. W., & Huang, K. C. (2009). Fuzzy hierarchical TOPSIS for supplier selection. Applied Soft Computing, 9(1), 377-386. https://doi.org/10.1016/j.asoc.2008.04.014

Zulqarnain, R. M., Abdal, S., Maalik, A., Ali, B., Zafar, Z., Ahamad, M. I., & Dayan, F. (2020). Application of TOPSIS method in decision making via soft set. Biomed J Sci Tech Res, 24(3). http://dx.doi.org/10.26717/BJSTR.2020.24.004045

Zulqarnain, R. M., Xin, X., Saeed, M., Ahmad, N., Dayan, F. Bilal Ahmad. (2020). Application of interval valued fuzzy soft. International Journal of Mathematical Research, 9(1), 11-19. http://dx.doi.org/10.18488/journal.24.2020.91.11.19

Zulqarnain, R. M., Xin, X. L., Saeed, M., & Ahmed, N. (2020). Application of interval valued fuzzy soft max-min decision making method in medical diagnosis. International Journal of Pharmaceutical Sciences Review and Research, 62(1), 56-60.

Zulqarnain, M., & Saeed, M. (2017). A new decision making method on interval valued fuzzy soft matrix (IVFSM). British Journal of Mathematics & Computer Science, 20(5), 1-17. https://doi.org/10.9734/BJMCS/2017/31243

Downloads

Published

2024-09-01

How to Cite

Abdul Razak, S., Abdullah, I. I., & Yahya, N. A. (2024). Enhancing Group Decision Making with Interval Valued Fuzzy Soft Max–min Method: An Examination in Manpower Recruitment. Journal of Computing Research and Innovation, 9(2), 496–511. https://doi.org/10.24191/jcrinn.v9i2.464

Issue

Section

General Computing
Loading...