Navigating AI in Higher Education: Examining Over-Reliance and Plagiarism among UiTM Tapah Students
DOI:
https://doi.org/10.24191/jcrinn.v10i2.529Keywords:
Artificial Intelligence, Higher Education, Digital Literacy, Academic Integrity, Technology AdoptionAbstract
The rapid advancement of Artificial Intelligence (AI) has transformed various sectors, including higher education. This study explores the challenges and opportunities of AI tool adoption in higher education, focusing on student learning experiences and ethical considerations. By employing correlation and regression analysis, this research analyzes data from 357 students to examine key factors influencing AI adoption, including effort expectancy, performance expectancy, digital literacy, and behavioural intention. The findings suggest that digital literacy significantly affects students' acceptance of AI tools, reinforcing the importance of targeted educational interventions. While AI integration enhances learning efficiency and accessibility, ethical concerns such as data privacy, algorithmic bias, and academic integrity remain critical challenges. The study provides insights for educators, policymakers, and institutions to develop strategies that balance technological advancements with ethical responsibility, ensuring an inclusive and effective AI-driven educational environment. Future research should explore longitudinal impacts and cross-cultural variations in AI adoption.
Downloads
References
Ahmad, N. A., & Rahman, D. (17 April, 2024). AI dorong siswa ciplak tugasan, gugat etika akademik. Berita Harian. https://www.bharian.com.my/rencana/komentar/2024/04/1235730/ai-dorong-siswa-ciplak-tugasan-gugat-etika-akademik
Ahmad, S. F., Han, H., Alam, M. M., Rehmat, M. K., Irshad, M., Arraño-Muñoz, M., & Ariza-Montes, A. (2023). Impact of artificial intelligence on human loss in decision making, laziness and safety in education. Humanities and Social Sciences Communications, 10, 311. https://doi.org/10.1057/s41599-023-01787-8
Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211. https://doi.org/10.1016/0749-5978(91)90020-T
Atmini, S., Jusoh, R., Prastiwi, A., Wahyudi, S. T., Hardanti, K. N., & Widiarti, N. N. (2024). Plagiarism among accounting and business postgraduate students: A fraud diamond framework moderated by understanding of artificial intelligence. Cogent Education, 11(1), 2375077. https://doi.org/10.1080/2331186X.2024.2375077
Çela, E., Fonkam, M. M., & Potluri, R. M. (2024). Risks of AI-assisted learning on student critical thinking: A case study of Albania. International Journal of Risk and Contingency Management, 12(1), 19. https://doi.org/10.4018/IJRCM.350185
Chechitelli, A. (2023, May 30). AI writing detection update from Turnitin's Chief Product Officer. Turnitin. https://www.turnitin.co.uk/blog/ai-writing-detection-update-from-turnitins-chief-product-officer
Darvishi, A., Khosravi, H., Sadiq, S., Gašević, D., & Siemens, G. (2024). Impact of AI assistance on student agency. Computers and Education, 210, 104967. https://doi.org/10.1016/j.compedu.2023.104967
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340. https://doi.org/10.2307/249008
Field, A. (2018). Discovering statistics using IBM SPSS statistics (5th ed.). University of Sussex, UK, SAGE Publications Ltd.
Fisher, J. (19 September 2024). Parents, here’s what you need to know about your teen’s use of AI. Lifewire. https://www.lifewire.com/teen-ai-use-8715109?utm_source=chatgpt.com
Gocen, A., & Aydemir, F. (2020). Artificial intelligence in education and schools. Research on Education and Media, 12(1), 13–21. https://doi.org/10.2478/rem-2020-0003
Gruenhagen, J. H., Sinclair, P. M., Carroll, J. A., Baker, P. R. A., Wilson, A., & Demant, D. (2024). The rapid rise of generative AI and its implications for academic integrity: Students’ perceptions and use of chatbots for assistance with assessments. Computers and Education: Artificial Intelligence, 7, 100273. https://doi.org/10.1016/j.caeai.2024.100273
Gujarati, D. N., Porter, D. C., & Pal, M. (2019). Basic Econometrics (6th ed.). MC Graw Hill India.
Hair, J. F., Babin, B. J., Anderson, R. E., & Black, W. C. (2018). Multivariate data analysis (8th ed.). Cengage.
Hutson, J. (2024). Rethinking plagiarism in the era of generative AI. Journal of Intelligent Communication, 3(2), 20-31. https://doi.org/10.54963/jic.v3i2.220
Ismail, A. A. (2024). Over-reliance of AI tools in academic writing tasks: The Malaysian tertiary level context. In E-Prosiding Persidangan Antarabangsa Sains Sosial & Kemanusiaan kali ke-9 (PASAK9 2024) (pp. 218-224).
Khalaf, M. A. (2025). Does attitude towards plagiarism predict aigiarism using ChatGPT? AI and Ethics, 5, 677-688. https://doi.org/10.1007/s43681-024-00426-5
Kline, R. B. (2016). Principles and practice of structural equation modeling (4th ed.). The Guilford Press.
Klingbeil, A., Grützner, C., & Schreck, P. (2024). Trust and reliance on AI — An experimental study on the extent and costs of overreliance on AI. Computers in Human Behavior, 160, 108352. https://doi.org/10.1016/j.chb.2024.108352
Kushmar, L. V., Vornachev, A. O., Korobova, I. O., & Kaida, N. O. (2022). Artificial Intelligence in Language Learning: What Are We Afraid of. Arab World English Journal (AWEJ) Special Issue on CALL(8). 262-273. https://dx.doi.org/10.24093/awej/call8.18
Latif, F. (1 November 2024). Rely too much on AI and we risk becoming powerless, PM Anwar warns students. Malaymail. https://www.malaymail.com/news/malaysia/2024/11/01/rely-too-much-on-ai-and-we-risk-becoming-powerless-pm-anwar-warns-students/155502
Livberber, T., & Ayvaz, S. (2023). The impact of Artificial Intelligence in academia: Views of Turkish academics on ChatGPT. Heliyon, 9(9), e19688. https://doi.org/10.1016/j.heliyon.2023.e19688
Luo, H., & Kong, H. (2024). ChatGPT plagiarism in the academic field: Exploration and analysis of plagiarism effects. In 2024 International Conference on Machine Learning and Intelligent Computing, (Vol. 245, pp. 1-11). Proceedings of Machine Learning Research.
Malik, A. R., Pratiwi, Y., Andajani, K., Numertayasa, I. W., Suharti, S., Darwis, A., & Marzuki. (2023). Exploring artificial intelligence in academic essay: Higher education student’s perspective. International Journal of Educational Research Open, 5, 100296. https://doi.org/10.1016/j.ijedro.2023.100296
Niloy, A. C., Hafiz, R., Md, B., Hossain, B. M. T., Gulmeher, F., Sultana, N., Islam, K. F., Bushra, F., Islam, S., Hoque, S. I., Rahman, M. A., & Kabir, S. (2024). AI chatbots: A disguised enemy for academic integrity? International Journal of Educational research Open, 7, 100396. https://doi.org/10.1016/j.ijedro.2024.100396
Nunnally, J. C. (1978). Psychometric theory (2nd ed.), McGraw Hill.
Pallant, J. (2020). SPSS survival manual: A step-by-step guide to data analysis using IBM SPSS (7th ed.), Routledge. https://doi.org/10.4324/9781003117452
Sozon, M., Pok, W. F., Sia, B. C., & Alkharabsheh, O. H. M. (2024). Cheating and plagiarism in higher education: a systematic literature review from a global perspective, 2016–2024. Journal of Applied Research in Higher Education. https://doi.org/10.1108/JARHE-12-2023-0558
Spatola, N. (2024). The efficiency-accountability tradeoff in AI integration: Effects on human performance and over-reliance. Computers in Human Behavior: Artificial Humans, 2(2), 100099. https://doi.org/10.1016/j.chbah.2024.100099
Stojanov, A., Liu, Q., & Koh, J. H. L. (2024). University students’ self-reported reliance on ChatGPT for learning: A latent profile analysis. Computers and Education: Artificial Intelligence, 6, 100243. https://doi.org/10.1016/j.caeai.2024.100243
Tabachnick, B. G., & Fidell, L. S. (2019). Using multivariate statistics (7th ed.). Pearson.
Taber, K. S. (2018). The use of Cronbach’s Alpha when developing and reporting research instruments in science education. Research in Science Education, 48, 1273-1296. https://doi.org/10.1007/s11165-016-9602-2
Teo, T. (2010). Validation of the technology acceptance measure for pre‐service teachers (TAMPST) on a Malaysian sample: A cross‐cultural study. Multicultural Education & Technology Journal, 4(3), 163-172. http://doi.org/10.1108/17504971011075165
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). MIS Quarterly, 27(3), 425-478. https://doi.org/10.2307/30036540
Vieriu, A. M., & Petrea, G. (2025). The Impact of Artificial Intelligence (AI) on Students’ Academic Development. Education Sciences, 15(3), 343. https://doi.org/10.3390/educsci15030343
Yim, I. H. Y. (2024). A critical review of teaching and learning artificial intelligence (AI) literacy: Developing an intelligence-based AI literacy framework for primary school education. Computers and Education: Artificial Intelligence, 7, 100319. https://doi.org/10.1016/j.caeai.2024.100319
Zhai, C., Wibowo, S., & Li, L. D. (2024). The effects of over-reliance on AI dialogue systems on students’ cognitive abilities: A systematic review. Smart Learning Environments, 11, 28. https://doi.org/10.1186/s40561-024-00316-7
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Nor Aslily Sarkam, Nor Hazlina Mohammad, Nurizatie Farhanim Saiful Lizam, Nurul Ain Azmi, Nadhira Yasmin Mazli, Mizan Qamalia Mohd Dzahir, Ros Amira Arisha Md Isa (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.