Skip to main navigation menu Skip to main content Skip to site footer

Navigating AI in Higher Education: Examining Over-Reliance and Plagiarism among UiTM Tapah Students

Abstract

The rapid advancement of Artificial Intelligence (AI) has transformed various sectors, including higher education. This study explores the challenges and opportunities of AI tool adoption in higher education, focusing on student learning experiences and ethical considerations. By employing correlation and regression analysis, this research analyzes data from 357 students to examine key factors influencing AI adoption, including effort expectancy, performance expectancy, digital literacy, and behavioural intention. The findings suggest that digital literacy significantly affects students' acceptance of AI tools, reinforcing the importance of targeted educational interventions. While AI integration enhances learning efficiency and accessibility, ethical concerns such as data privacy, algorithmic bias, and academic integrity remain critical challenges. The study provides insights for educators, policymakers, and institutions to develop strategies that balance technological advancements with ethical responsibility, ensuring an inclusive and effective AI-driven educational environment. Future research should explore longitudinal impacts and cross-cultural variations in AI adoption.

Keywords

Artificial Intelligence, Higher Education, Digital Literacy, Academic Integrity, Technology Adoption

PDF

References

  1. Ahmad, N. A., & Rahman, D. (17 April, 2024). AI dorong siswa ciplak tugasan, gugat etika akademik. Berita Harian. https://www.bharian.com.my/rencana/komentar/2024/04/1235730/ai-dorong-siswa-ciplak-tugasan-gugat-etika-akademik
  2. Ahmad, S. F., Han, H., Alam, M. M., Rehmat, M. K., Irshad, M., Arraño-Muñoz, M., & Ariza-Montes, A. (2023). Impact of artificial intelligence on human loss in decision making, laziness and safety in education. Humanities and Social Sciences Communications, 10, 311. https://doi.org/10.1057/s41599-023-01787-8
  3. Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211. https://doi.org/10.1016/0749-5978(91)90020-T
  4. Atmini, S., Jusoh, R., Prastiwi, A., Wahyudi, S. T., Hardanti, K. N., & Widiarti, N. N. (2024). Plagiarism among accounting and business postgraduate students: A fraud diamond framework moderated by understanding of artificial intelligence. Cogent Education, 11(1), 2375077. https://doi.org/10.1080/2331186X.2024.2375077
  5. Çela, E., Fonkam, M. M., & Potluri, R. M. (2024). Risks of AI-assisted learning on student critical thinking: A case study of Albania. International Journal of Risk and Contingency Management, 12(1), 19. https://doi.org/10.4018/IJRCM.350185
  6. Chechitelli, A. (2023, May 30). AI writing detection update from Turnitin's Chief Product Officer. Turnitin. https://www.turnitin.co.uk/blog/ai-writing-detection-update-from-turnitins-chief-product-officer
  7. Darvishi, A., Khosravi, H., Sadiq, S., Gašević, D., & Siemens, G. (2024). Impact of AI assistance on student agency. Computers and Education, 210, 104967. https://doi.org/10.1016/j.compedu.2023.104967
  8. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340. https://doi.org/10.2307/249008
  9. Field, A. (2018). Discovering statistics using IBM SPSS statistics (5th ed.). University of Sussex, UK, SAGE Publications Ltd.
  10. Fisher, J. (19 September 2024). Parents, here’s what you need to know about your teen’s use of AI. Lifewire. https://www.lifewire.com/teen-ai-use-8715109?utm_source=chatgpt.com
  11. Gocen, A., & Aydemir, F. (2020). Artificial intelligence in education and schools. Research on Education and Media, 12(1), 13–21. https://doi.org/10.2478/rem-2020-0003
  12. Gruenhagen, J. H., Sinclair, P. M., Carroll, J. A., Baker, P. R. A., Wilson, A., & Demant, D. (2024). The rapid rise of generative AI and its implications for academic integrity: Students’ perceptions and use of chatbots for assistance with assessments. Computers and Education: Artificial Intelligence, 7, 100273. https://doi.org/10.1016/j.caeai.2024.100273
  13. Gujarati, D. N., Porter, D. C., & Pal, M. (2019). Basic Econometrics (6th ed.). MC Graw Hill India.
  14. Hair, J. F., Babin, B. J., Anderson, R. E., & Black, W. C. (2018). Multivariate data analysis (8th ed.). Cengage.
  15. Hutson, J. (2024). Rethinking plagiarism in the era of generative AI. Journal of Intelligent Communication, 3(2), 20-31. https://doi.org/10.54963/jic.v3i2.220
  16. Ismail, A. A. (2024). Over-reliance of AI tools in academic writing tasks: The Malaysian tertiary level context. In E-Prosiding Persidangan Antarabangsa Sains Sosial & Kemanusiaan kali ke-9 (PASAK9 2024) (pp. 218-224).
  17. Khalaf, M. A. (2025). Does attitude towards plagiarism predict aigiarism using ChatGPT? AI and Ethics, 5, 677-688. https://doi.org/10.1007/s43681-024-00426-5
  18. Kline, R. B. (2016). Principles and practice of structural equation modeling (4th ed.). The Guilford Press.
  19. Klingbeil, A., Grützner, C., & Schreck, P. (2024). Trust and reliance on AI — An experimental study on the extent and costs of overreliance on AI. Computers in Human Behavior, 160, 108352. https://doi.org/10.1016/j.chb.2024.108352
  20. Kushmar, L. V., Vornachev, A. O., Korobova, I. O., & Kaida, N. O. (2022). Artificial Intelligence in Language Learning: What Are We Afraid of. Arab World English Journal (AWEJ) Special Issue on CALL(8). 262-273. https://dx.doi.org/10.24093/awej/call8.18
  21. Latif, F. (1 November 2024). Rely too much on AI and we risk becoming powerless, PM Anwar warns students. Malaymail. https://www.malaymail.com/news/malaysia/2024/11/01/rely-too-much-on-ai-and-we-risk-becoming-powerless-pm-anwar-warns-students/155502
  22. Livberber, T., & Ayvaz, S. (2023). The impact of Artificial Intelligence in academia: Views of Turkish academics on ChatGPT. Heliyon, 9(9), e19688. https://doi.org/10.1016/j.heliyon.2023.e19688
  23. Luo, H., & Kong, H. (2024). ChatGPT plagiarism in the academic field: Exploration and analysis of plagiarism effects. In 2024 International Conference on Machine Learning and Intelligent Computing, (Vol. 245, pp. 1-11). Proceedings of Machine Learning Research.
  24. Malik, A. R., Pratiwi, Y., Andajani, K., Numertayasa, I. W., Suharti, S., Darwis, A., & Marzuki. (2023). Exploring artificial intelligence in academic essay: Higher education student’s perspective. International Journal of Educational Research Open, 5, 100296. https://doi.org/10.1016/j.ijedro.2023.100296
  25. Niloy, A. C., Hafiz, R., Md, B., Hossain, B. M. T., Gulmeher, F., Sultana, N., Islam, K. F., Bushra, F., Islam, S., Hoque, S. I., Rahman, M. A., & Kabir, S. (2024). AI chatbots: A disguised enemy for academic integrity? International Journal of Educational research Open, 7, 100396. https://doi.org/10.1016/j.ijedro.2024.100396
  26. Nunnally, J. C. (1978). Psychometric theory (2nd ed.), McGraw Hill.
  27. Pallant, J. (2020). SPSS survival manual: A step-by-step guide to data analysis using IBM SPSS (7th ed.), Routledge. https://doi.org/10.4324/9781003117452
  28. Sozon, M., Pok, W. F., Sia, B. C., & Alkharabsheh, O. H. M. (2024). Cheating and plagiarism in higher education: a systematic literature review from a global perspective, 2016–2024. Journal of Applied Research in Higher Education. https://doi.org/10.1108/JARHE-12-2023-0558
  29. Spatola, N. (2024). The efficiency-accountability tradeoff in AI integration: Effects on human performance and over-reliance. Computers in Human Behavior: Artificial Humans, 2(2), 100099. https://doi.org/10.1016/j.chbah.2024.100099
  30. Stojanov, A., Liu, Q., & Koh, J. H. L. (2024). University students’ self-reported reliance on ChatGPT for learning: A latent profile analysis. Computers and Education: Artificial Intelligence, 6, 100243. https://doi.org/10.1016/j.caeai.2024.100243
  31. Tabachnick, B. G., & Fidell, L. S. (2019). Using multivariate statistics (7th ed.). Pearson.
  32. Taber, K. S. (2018). The use of Cronbach’s Alpha when developing and reporting research instruments in science education. Research in Science Education, 48, 1273-1296. https://doi.org/10.1007/s11165-016-9602-2
  33. Teo, T. (2010). Validation of the technology acceptance measure for pre‐service teachers (TAMPST) on a Malaysian sample: A cross‐cultural study. Multicultural Education & Technology Journal, 4(3), 163-172. http://doi.org/10.1108/17504971011075165
  34. Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). MIS Quarterly, 27(3), 425-478. https://doi.org/10.2307/30036540
  35. Vieriu, A. M., & Petrea, G. (2025). The Impact of Artificial Intelligence (AI) on Students’ Academic Development. Education Sciences, 15(3), 343. https://doi.org/10.3390/educsci15030343
  36. Yim, I. H. Y. (2024). A critical review of teaching and learning artificial intelligence (AI) literacy: Developing an intelligence-based AI literacy framework for primary school education. Computers and Education: Artificial Intelligence, 7, 100319. https://doi.org/10.1016/j.caeai.2024.100319
  37. Zhai, C., Wibowo, S., & Li, L. D. (2024). The effects of over-reliance on AI dialogue systems on students’ cognitive abilities: A systematic review. Smart Learning Environments, 11, 28. https://doi.org/10.1186/s40561-024-00316-7

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

<< < 6 7 8 9 10 11 12 13 14 15 > >> 

You may also start an advanced similarity search for this article.